Examples



mdbootstrap.com



 
Статья
2020

A CAM-B3LYP DFT Investigation of Atenolol Adsorption on the Surface of Boron Nitride and Carbon Nanotubes and Effect of Surface Carboxylic Groups


 Maryam Hesabi Maryam Hesabi,  Ghasem Ghasemi Ghasem Ghasemi
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420080117
Abstract / Full Text

The adsorption behavior of atenolol molecule over the pristine carbon nanotube and boron nitride nanotube as well as functionalized carbon nanotube was performed employing the B3LYP and CAM-B3LYP methods with 6-311G(d, p) basis set in two phases (gas and water solution). We used natural bond orbital, non-covalent interactions and the quantum theory of atoms in molecules to investigate the hydrogen bonds, interaction energies and charge transfers between the atenolol drug and nanosystems. In all cases, the process of intermolecular interaction between atenolol and nanosystems is exothermic showing that the optimized complexes are stable. The hydrogen-bonding interactions between drug and CNT–(COOH)3 play an important role for the different kinds of adsorption. In addition, data showed that there is a large charge donation and back-donation for atenolol adsorption on the surface of CNT–(COOH)3. Results indicated that although in the case of pristine carbon nanotube, the adsorption is weak, functionalization of carbon nanotube with –COOH groups can effectively modify the surface of nanotubes towards atenolol molecules adsorption and improve their solubility in water solution.

Author information
  • Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran Maryam Hesabi
  • Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran Ghasem Ghasemi
References
  1. A. Kuster, A. C. Alder, B. I. Escher, K. Duis, K. Fenner, J. Garric, T. H. Hutchinson, D. R. Lapen, A. Pery, and J. Rombke, Integr. Environ. Assess. Manage. 6, 514 (2010).
  2. B. Egan, J. Flack, M. Patel, and S. Lombera, J. Clin. Hypertens. 20, 1464 (2018).
  3. N. Bertrand and J.-C. Leroux, J. Control. Release 161, 152 (2012).
  4. C. Chen, H. Zhang, L. Hou, J. Shi, L. Wang, C. Zhang, M. Zhang, H. Zhang, X. Shi, and H. Li, J. Pharm. Pharm. Sci. 16, 40 (2013).
  5. M. Hesabi and R. Behjatmanesh-Ardakani, Comput. Theor. Chem. 1117, 61 (2017).
  6. H. Xu, Q. Wang, G. Fan, and X. Chu, Theor. Chem. Acc. 7, 104 (2018).
  7. O. A. Oyetade, V. O. Nyamori, B. S. Martincigh, and S. B. Jonnalagadda, RSC Adv. 6, 2731 (2016).
  8. K. Z. Milowska, J. Phys. Chem. C 119, 26734 (2015).
  9. M. Mananghaya, M. A. Promentilla, K. Aviso, and R. Tan, J. Mol. Liq. 215, 780 (2016).
  10. R. Kobayashi and R. D. Amos, Chem. Phys. Lett. 420, 106 (2006).
  11. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
  12. L. Simon and J. M. Goodman, Org. Biomol. Chem. 9, 689 (2011).
  13. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford, CT, 2009).
  14. S. Dapprich, I. Komaromi, K. S. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct. 461, 1 (1999).
  15. W. L. Yim and Z. F. Liu, Chem. Phys. Lett. 398, 297 (2004).
  16. Z. Chen, S. Nagase, A. Hirsch, R. C. Haddon, W. Thiel, and P. V. Schleyer, Angew. Chem., Int. Ed. 43, 1552 (2004).
  17. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).
  18. S. Boys and F. Bernardi, Mol. Phys. 100, 65 (2002).
  19. F. A. I. M. Biegler-Konig, AIM 2000 1.0 (Univ. Appl. Sci., Bielefeld, 2000).
  20. W. Humphrey, A. Dalke, and K. Schulten J. Mol. Graph. 14, 33 (1996).
  21. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).
  22. E. D. Glendening, C. R. Landis, and F. Weinhold, J. Comput. Chem. 34, 1429 (2013).
  23. Jmol-NBO Visualization Helper. http://chemgplus.blogspot.com/2013/08/jmolnbo-visualization-helper.html.
  24. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978).
  25. R. G. Parr and W. Yang, J. Am. Chem. Soc. 106, 4049 (1984).
  26. P. Politzer, P. Lane, J. S. Murray, and M. C. Concha, J. Mol. Model. 11, 1 (2005).
  27. S. J. Grabowski, J. Phys. Chem. A 116, 1838 (2012).
  28. I. Rozas, I. Alkorta, and J. Elguero, J. Am. Chem. Soc. 122, 11154 (2000).
  29. M. Ziolkowski, S. J. Grabowski, and J. Leszczynski, J. Phys. Chem. A 110, 6514 (2006).
  30. C. F. Matta, J. Hernandez-Trujillo, T. H. Tang, and R. F. Bader, Chem.-Eur. J. 9, 1940 (2003).
  31. A. Shahi and E. Arunan, Phys. Chem. Chem. Phys. 16, 22935 (2014).
  32. A. Varadwaj, P. R. Varadwaj, and B. Y. Jin, RSC Adv. 6, 19098 (2016).
  33. E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, and W. Yang, J. Am. Chem. Soc. 132, 6498 (2010).
  34. H. Xiao, J. Tahir-Kheli, and W. A. Goddard III, J. Phys. Chem. Lett. 2, 212 (2011).