Статья
2017

Nanoparticles of complex oxides Li1 + x (Ni y Mn z Co1 – yz )1 – x O2 – δ (0 ≤ x ≤ 0.2, 0.2 ≤ y ≤ 0.6, 0.2 ≤ z ≤ 0.4) obtained by thermal destruction of metal-containing compounds in oil


V. A. Voronov V. A. Voronov , S. P. Gubin S. P. Gubin , A. V. Cheglakov A. V. Cheglakov , D. Yu. Kornilov D. Yu. Kornilov , A. S. Karaseva A. S. Karaseva , E. S. Krasnova E. S. Krasnova , S. V. Tkachev S. V. Tkachev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517070163
Abstract / Full Text

Cathode materials in the form of Li1 + x (Ni y Mn z Co1 – yz )1 – x O2 – δ (0 ≤ x ≤ 0.2, 0.2 ≤ y ≤ 0.6, 0.2 ≤ z ≤ 0.4) core–shell nanoparticles coated with a thin carbon shell were synthesized by thermal destruction of metal-containing compounds in oil and studied. The results of element analysis, X-ray diffraction analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical tests of cathodes based on the obtained complex oxides in model cells were presented. The complex oxide Li1.2Ni0.2Mn0.4Co0.2O1.9 was the most promising composition because the loss of capacity after 50 cycles was 4% at a current density C/2 and an operating potential of 3.0–4.4 V relative to E (Li/Li+). When the current density in discharge increased sixfold (3 C), the loss of capacity was 14% relative to the value obtained at a discharge current C/2 at voltages 3.0 to 4.4 V.

Author information
  • AkKo Lab, Moscow, 129110, Russia

    V. A. Voronov, S. P. Gubin, A. V. Cheglakov, D. Yu. Kornilov, A. S. Karaseva, E. S. Krasnova & S. V. Tkachev

  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia

    V. A. Voronov, S. P. Gubin & S. V. Tkachev

References
  1. Idemoto, Y. and Matsui, T., Solid State Ionics, 2008, vol. 179, p. 625.
  2. Yang, S.Y., Wang, X.Y., and Yang, X.K., J. Solid State Electrochem., 2012, vol. 16, p. 1229.
  3. Park, S.-H., Kang, S.-H., and Belharouak, I., J. Power Sources, 2008, vol. 177, p. 177.
  4. Whittingham, M.S., Chem. Rev., 2004, vol. 104, p. 4271.
  5. Armand, M. and Tarascon, J.M., Nature, 2008, vol. 451, p. 652.
  6. Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Chem. Mater., 2008, vol. 20, p. 6072.
  7. Yoshio, M. and Noguchi, H., J. Power Sources, 2000, vol. 90, p. 176.
  8. Xue, L., Li, X., Liao, Y., Xing, L., Xu, M., and Li, W., J. Solid State Electrochem., 2015, vol. 19, p. 569.
  9. Matsuda, K. and Taniguchi, I., J. Power Sources, 2004, vol. 132, p. 156.
  10. Lee, D.K. and Park, S.H., J. Power Sources, 2006, vol. 162, p. 1346.
  11. Lengyel, M. and Atlas, G., J. Power Sources, 2014, vol. 262, p. 286.
  12. Wang, Zh., Dong, H., and Chen, L., J. Solid State Ionics, 2004, vol. 175, p. 239.
  13. Gubin, S.P., Yurkov, G.Yu., and Kosobudsky, I.D., Int. J. Mater. Prod. Technol., 2005, vol. 23, p. 2.
  14. Gubin, S.P. and Yurkov, G.Yu., Russ. J. Inorg. Chem., 2002, vol. 47, suppl. 1, p. 32.
  15. Cheglakov, A.V., Kornilov, D.Yu., Voronov, V.A., Gubin, S.P., and Geller, M.M., RF Patent 2536649, 2013.
  16. Voronov, V.A. and Gubin, S.P., Inorg. Mater., 2015, vol. 51, no. 11, p. 1151.
  17. Voronov, V.A. and Gubin, S.P., Inorg. Mater., 2014, vol. 50, no. 4, p. 409.
  18. Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, vol. 30, no. 7, p. 642.
  19. Johnson, C.S., Kim, J-S., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Electrochem. Commun., 2004, p. 1085.
  20. Thackeray, M.M., Kang, S.-H., and Johnson, C.S., J. Mater. Chem., 2007, vol. 17, p. 3112.
  21. Sun, Y. and Ouyang, C., J. Electrochem. Soc., 2004, vol. 151, p. 504.
  22. He, Y.S., Ma, Z.F., and Jiang, Y., J. Power Sources, 2007, vol. 163, p.1053.
  23. Ju, J.H. and Ryu, K.S., J. Alloys Compd., 2011, vol. 509, p. 7985.
  24. Sun, Y., Ouyang, C., Wang, Z., and Huang, L., J. Electrochem. Soc., 2004, vol. 151, p. 504.
  25. Voronov, V.A., Shvetsov, A.O., Gubin, S.P., Cheglakov, A.V., Kornilov, D.Yu., Karaseva, A.S., Krasnova, E.S., and Tkachev, S.V., Zh. Perspekt. Mater., 2016, no. 8, p. 5.
  26. Koyama, Y., Yabuuchi, N., and Tanaka, I., J. Electrochem. Soc., 2004, vol. 151, p. 1545.
  27. Noh, H.J., J. Power Sources, 2013, vol. 233, p. 121.
  28. Cao, H., Zhang, Y., and Zhang, J., Solid State Ionics, 2005, vol. 176, p. 1207.
  29. McIntyre, N.S. and Cook, M.G., Anal. Chem., 1975, vol. 47, p. 2208.
  30. Li, C.P., Proctor, A., and Hercules, D.M., Appl. Spectrosc., 1984, vol. 38, p. 880.
  31. Tran, N., Croguennec, L., and Jordy, C., Solid State Ionics, 2005, vol. 176, p. 1539.
  32. Kosova, N.V., Devyatkina, E.T., and Kaichev, V.V., J. Power Sources, 2007, 174, p. 965.
  33. Voronov, V.A., Shvetsov, A.O., Gubin, S.P., Cheglakov, A.V., Kornilov, D.Yu., Karaseva, A.S., Krasnova, E.S., Tkachev, S.V., Russ. J. Inorg. Chem., 2016, vol. 51, p. 1153.
  34. Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Chem. Mater., 2008, vol. 20, p. 6095.
  35. Yabuuchi, N. and Ohzuku, T., J. Power Sources, 2003, vols. 119–121, p.171.
  36. Liao, P.Y., Duh, J.G., and Sheen, S.R., J. Electrochem. Soc., 2005, vol. 152A, p. 1695.
  37. Cao, H., Zhang, Y., Zhang, J., and Xia, B., Solid State Ionics, 2005, vol. 176, p. 1207.