Examples



mdbootstrap.com



 
Статья
2017

Estimating parameters from rotating ring disc electrode measurements


Shriram Santhanagopalan Shriram Santhanagopalan , Ralph E. White Ralph E. White
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517100111
Abstract / Full Text

Rotating ring disc electrode (RRDE) experiments are a classic tool for investigating kinetics of electrochemical reactions. Several standardized methods exist for extracting transport parameters and reaction rate constants using RRDE measurements. In this work, we compare some approximate solutions to the convective diffusion used popularly in the literature to a rigorous numerical solution of the Nernst–Planck equations coupled to the three dimensional flow problem. In light of these computational advancements, we explore design aspects of the RRDE that will help improve sensitivity of our parameter estimation procedure to experimental data. We use the oxygen reduction in acidic media involving three charge transfer reactions and a chemical reaction as an example, and identify ways to isolate reaction currents for the individual processes in order to accurately estimate the exchange current densities.

Author information
  • Transportation and Hydrogen Systems Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA

    Shriram Santhanagopalan

  • Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA

    Ralph E. White

References
  1. Levich, V.G., Physicochemical Hydrodynamics, Prentice Hall, 1962, ISBN-13: 978-0136744405.
  2. Compton, R.G., and Banks, C.E., Understanding Voltammetry, Imperial College Press, 2011, ISBN-13 978-1-84816-585-4.
  3. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., 2000, ISBN-13: 978-0471043720.
  4. Gabe, D.R. and Walsh, F.C., J. Appl. Electrochem., 1983, vol. 13, no. 1, pp. 3–21.
  5. Tarasevich, M.R., Sadkowski, A., and Yeager, E., Kinetics and mechanisms of electrode processes, in Comprehensive Treatise of Electrochemistry, Horsman, P., Conway, B.E., and Yeager, E., Eds., New York: Plenum Press, 1983, vol. 7, p. 354.
  6. Newman, J.S., J. Phys. Chem., 1966, vol. 70, no. 4, pp. 1327–1328.
  7. White, R.E. and Newman, J.S., J. Electroanal. Chem., 1977, vol. 82, pp. 173–186.
  8. Tribollet, B. and Newman, J.S., J. Electrochem. Soc., 1983, vol. 130, pp. 2016–2026.
  9. White, F.M., Viscous Fluid Flow, New York: McGraw-Hill, Inc, 1974.
  10. Smyrl, W.H. and Newman, J.S., J. Electrochem. Soc., 1972, vol. 119, pp. 212–219.
  11. Newman, J. and Thomas-Alyea, K.E., Electrochemical Systems, 3rd Ed., New Jersey: John Wiley & Sons, Inc., 2004.
  12. White, R.E., Mohr, C.M., Jr., and Newman, J., J. Electrochem. Soc., 1976, vol. 123, p. 383.
  13. Kármán, T. and Angew, Z., Math. Mech., 1921, vol. 1, p. 486.
  14. Cochran, W.G., Proc. Cambridge Philos. Soc., 1934, vol. 30, p. 365.
  15. Krylov, V.S. and Babak, V.N., Sov. Electrochem., 1971, vol. 7, p. 826.
  16. Nicancioglu, K. and Newman, J.S., J. Electrochem. Soc., 1973, vol. 120, pp. 1356–1358.
  17. Santhanagopalan, S. and White, R.E., J. Electrochem. Soc., 2004, vol. 151, no. 8, pp. J50–J53.
  18. Deslouis, C., Tribollet, B., Duprat, M., and Moran, F., J. Electrochem. Soc., 1987, vol. 134, p. 2496.
  19. Orazem, M.E., in Tutorial: Application of Mathematical Models for Interpretation of Impedance Spectra, Savinell, R.F., West, A.C., Renton, J.M., and Weidner, J., Ed., The Electrochemical Society Proceedings Series, NJ: Pennington, 1999, PV 99-14, p. 68.
  20. Verbrugge, M.W., J. Electrochem. Soc., 1992, vol. 139, p. 3529.
  21. Pleskov, Yu.V. and Filinovskii, V.Yu., The Rotating Disc Electrode, New York: Consultants Bureau, 1976.
  22. Beran, P. and Bruckenstein, S., J. Phys. Chem., 1968, vol. 72, p. 3630.
  23. White, R.E., Lorimer, S.E., and Darby, R., J. Electrochem. Soc., 1983, vol. 130, no. 5, pp. 1123–1126.
  24. Pons, S., Electroanalytical Chemistry, vol. 13, Bard, A.J., Ed., New York: Marcel Dekker, Inc., 1984.
  25. Hale, J.M., J. Electroanal. Chem. Interfacial Electrochem., 1964, vol. 8, p. 332.
  26. Prater, K.B. and Bard, A.J., J. Electrochem. Soc., 1970, vol. 117, p. 207.
  27. Eddowes, M.J. and Grazel, M., J. Electroanal. Chem. Interfacial Electrochem., 1983, vol. 152, p. 143.
  28. White, R.E. and Lorimer, S.E., J. Electrochem. Soc., 1983, vol. 130, no. 5, pp. 1096–1103.
  29. Adanuvor, P.K., White, R.E., Lorimer, S.E., J. Electrochem. Soc., 1987, vol. 134, no. 3, pp. 625–631.
  30. Adanuvor, P.K. and White, R.E., J. Electrochem. Soc., 1987, vol. 134, pp. 1093–1098.
  31. Adanuvor, P.K. and White, R.E., J. Electrochem. Soc., 1987, vol. 135, no. 8, pp. 1887–1898.
  32. Wu, S-L., Orazem, M.E., Tribollet, B., and Vivier, V., J. Electroanal. Chem., 2015, vol. 737, pp. 11–22.
  33. Schmachtel, S. and Kontturi, K., Electrochim. Acta, 2011, vol. 56, no. 19, pp. 6812–6823.
  34. Mohr, C.M., Jr. and Newman, J., J. Electrochem. Soc., 1975, vol. 122, pp. 928–931.
  35. Low, C.T.J., Roberts, E.P.L., and Walsh, F.C., Electrochim. Acta, 2007, vol. 52, p. 3833.
  36. Tong, L., Int. J. Surf. Eng. Coatings, 2012, vol. 90, no. 3, pp. 120–124.
  37. Dong, Q., Santhanagopalan, S., and White, R.E., J. Electrochem. Soc., 2008, vol. 155, no. 9, pp. B963–B968.
  38. Dong, Q., Santhanagopalan, S., and White, R.E., J. Electrochem. Soc., 2007, vol. 154, no. 8, pp. A816–A825.
  39. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, 2nd Ed., New York: John Wiley & Sons, Inc., 2002.
  40. Comsol Multiphysics, Version 3.2, Reference Manual, 2005.
  41. Bower, V.E. and Davis, R.S., J. Res. Nat. Bureau Standards, 1980, vol. 85, no. 3, pp. 175–191.
  42. Albery, W.J. and Bruckenstein, S., Trans. Faraday Soc., 1966, vol. 62, pp. 1920–1924.
  43. Markovic, N.M., Gasteiger, H.A. and Ross. P.N., Jr., J. Phys. Chem., 1995, vol. 99, pp. 3411–3418.
  44. Adanuvor, P.K., White, R.E., and Lorimer, S.E., J. Electrochem. Soc., 1987, vol. 134, pp. 1450–1454.
  45. Henstridge, M., Laborda, E., Rees, N.V., and Compton, R.G., Electrochim. Acta, 2012, vol. 84, pp. 12–20.