Статья
2018

Software and Instrumentational Methods of Enhancing the Resolution in Electrochemical Noise Measurements


E. A. Astafev E. A. Astafev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130050
Abstract / Full Text

Several methods of enhancing the signal-to-noise ratio for instrumentation designed to measure electrochemical noise are practically tested. The experiments are carried out using model RC-circuits and lielectrolyte electrochemical cells. Strong limitations in the tested objects’ impedance values are found due to the input current noise of the instrumentation, especially during the parallel connection of several channels. The advantages of a two-channel scheme for automatically compensating the instrument’s self noise are demonstrated. Different methods of lowering the dispersion of the frequency dependences of the spectral power density of electrochemical noise are compared. It is shown that averaging over segments with an overlap is the most effective method but averaging over frequencies can lead to large distortions when investigating electrochemical systems.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    E. A. Astafev

References
  1. Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.
  2. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.
  3. Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647.
  4. Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, no. 3, p. 265.
  5. Jamali, S.S. and Mills, D.J., A critical review of electrochemical noise measurement as a tool forevaluation of organic coatings, Prog. Org. Coat., 2016, vol. 95, p. 26.
  6. Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu. A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., 2016, vol. 52, p. 1001.
  7. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357.
  8. Legros, B., Thivel, P.-X., Bultel, Y., and Nogueira, R.P., First results on PEMFC diagnosis by electrochemical noise, Electrochem. Comm., 2011, vol. 13, p. 1514.
  9. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742.
  10. Al-Mazeedi, H.A.A. and Cottis, R.A., A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 2004, vol. 49, p. 2787.
  11. Hoseinieh, S.M., Homborg, A.M., Shahrabi, T., Mol, J.M.C., and Ramezanzadeh, B., A novel approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise, Electrochim. Acta, 2016, vol. 217, p. 226.
  12. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803.
  13. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-3892-4
  14. Astaf’ev, E.A., Ukshe, A.E., and Dobrovolskii, Yu.A., Hardware for measurement of electrochemical noise of chemical power sources, Pribory i Tekhnika Eksperimenta (in Russian), 2017, no. 6, p. 130.]
  15. Astaf’ev, E.A. and Manzhos, R.A., Wide dynamic range hardware for electrochemical noise measurement, Pribory i Tekhnika Eksperimenta (in Russian), 2018, no. 1, p. 149.
  16. Astaf’ev, E.A., Universal instrument with high resolution for electrochemical noise measurement, Pribory i Tekhnika Eksperimenta (in Russian), 2018, no. 1, p. 151.
  17. Abaturov, M.A., Kanevskii, L.S., Microprocessor-free measurement complex for investigation of electrochemical noise characteristics of chemical power sources, Electrohimicheskaya Energetica (in Russian), 2008, vol. 8, no. 4, p. 222.
  18. Bosch, R.-W., Cottis, R., Csecs, K., Dorsch, T., Dunbar, L., Heyn, A., Huet, F., Hyökyvirta, O., Kerner, Z., Kobzova, A., Macak, J., Novotny, R., Öijerholm, J., Piippo, J., Richner, R., Ritter, S., Sánchez-Amaya, J.M., Somogyi, A., Väisänen, S., and Zhang, W., Reliability of electrochemical noise measurements: Results of round-robin testing on electrochemical noise, Electrochim. Acta, 2014, vol. 120, p. 379.
  19. Evdokimov, Yu.K., Denisov, E.S., and Martemianov, S.A., Electrical noise of hydrogen fuel cell and diagnostic characteristic research, Nonlinear World, 2009, vol. 7, p. 706.
  20. Denisov, E.S., Evdokimov, Yu.K., Martemianov, S., Thomas, A., and Adiutantov, N., Electrochemical noise as a diagnostic tool for PEMFC, Fuel Cells, 2017, vol. 17, p. 225.
  21. Legros, B., Thivel, P.X., Bultel, Y., and Nogueira, R.P., First results on PEMFC diagnosis by electrochemical noise, Electrochem. Commun. 2011, vol. 13, p. 1514.
  22. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise, J. Power Sources, 2017, vol. 342, p. 553.
  23. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337.
  24. Homborg, A.M., Tinga, T., Zhang, X., van Westing, E.P.M., Oonincx, P.J., de Wit, J.H.W., and Mol, J.M.C., Time–frequency methods for trend removal in electrochemical noise data, Electrochim. Acta, 2012, vol. 70, p. 199.
  25. Mansfeld, F., Sun, Z., Hsu, C.H., and Nagiub, A., Concerning trend removal in electrochemical noise measurements, Corr. Sci., 2001, vol. 43, p. 341.
  26. Xia D.-H., and Behnamian Y., Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 2015, vol. 51, p. 593.
  27. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 1928, vol. 32, p. 110.
  28. Marple, S.L., Digital spectral Analysis, New Jersey: Prentice-Hall, 1987.
  29. Astafev, E.A., Ukshe, A.E., Leonova, L.S., Manzhos, R.A., and Dobrovolsky, Yu.A., Drift removal and processing features in electrochemical noise analysis, Russ. J. Electrochem., 2018, vol. 54 (submitted). doi 10.1134/S0424857018120034
  30. Mansfeld, F., Han, L.T., Lee, C.C., Chen, C., Zhang, G., and Xiao, H., Analysis of electrochemical impedance and noise data for polymer coated metals, Corros. Sci., 1997, vol. 39, p. 255.
  31. Lee, C. and Mansfeld, F., Analysis of electrochemical noise data for a passive system in the frequency domain, Corros. Sci., 1998, vol. 40, p. 959.
  32. Kanevskii, L.S. and Grafov, B.M., Dynamics of lithium electrode passivation in aprotic organic electrolytes, studied by electrochemical noise method, Russ. J. Electrochem., 2008, vol. 44, p. 570.
  33. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-4074-0
  34. Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-4067-z
  35. Timashev, S.F. and Polyakov, Yu.S., Review of Flicker noise spectroscopy in electrochemistry, Fluct. Noise Lett., 2007, vol. 7, p. R15.
  36. Timashev, S.F., Flicker noise spectroscopy and its application: information hidden in chaotic signals (Review), Russ. J. Electrochem., 2006, vol. 45, p. 424.
  37. Grafov, B.M., Klyuev, A.L., Davydov, A.D., Dobrovolskii, Y.A., Ukshe, A.E., and Astaf’ev, E.A., Median Chebyshev spectroscopy of electrochemical noise, J. Solid State Electrochem., 2017, vol. 21, p. 915.
  38. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., 2015, vol. 51, p. 503.
  39. Dubasova, V.S., Fialkov, A.S., Mikhailova, V.A., Nikolenko, A.F., Ponomareva, T.A., Zaichikov, S.G., Baver, A.I., Smirnova, T.Yu., and Kanevskii, L.S., Electrochemical characteristics of the negative electrode in lithium-ion batteries: effect of structure and surface properties of the carbon material, Russ. J. Electrochem., 2004, vol. 40, p. 369.
  40. Kanevskii, L.S., Grafov, B.M., and Astaf’ev, M.G., Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes, Russ. J. Electrochem., 2005, vol. 41, p. 1091.
  41. Aurbach, D., Markovsky, B., Levi, M.D., Levi, E., Schechter, A., Moshkovich, M., and Cohen, Y., New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries, J. Power Sources, 1999, vol. 81–82, p. 95.
  42. Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2005, vol. 41, p. 1091.
  43. Elkin, V.V., Grafov, B.M., Nekrasov, L.N., Khomchenko, T.N., and Alekseev, V.N., Turbulent electrochemical noise: A theoretical analysis in the frequencypotential coordinates, Russ. J. Electrochem., 2002, vol. 38, p. 199.
  44. Nekrasov, L.N., Grafov, B.M., Elkin, V.V., Khomchenko, T.N., and Martem’yanov, S.A., Analysis of turbulent noise spectra of electrochemical reactions in different experimental conditions, Russ. J. Electrochem., 2002, vol. 38, p. 467.
  45. Ritter, S., Huet F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mater. Corros., 2012, vol. 63, p. 297.
  46. Epelboin, I., Gabrielli, C., Keddam, M., Raillon, L., Study of potentiostat noise, J. Electroanal. Chem., 1978, vol. 93, p. 155.
  47. Bertocci, U., Applications of a low noise potentiostat in electrochemical measurements, J. Electrochem. Soc., 1980, vol. 127, p. 1931.
  48. Fang, T., McGrath, M., Diamond, D., and Smyth, M.R., Development of a computer controlled multichannel potentiostat for applications with flowing solution analysis, Anal. Chim. Acta, 1995, vol. 305, p. 347.
  49. Kerzenmacher, S., Mutschler, K., Kraling, U., Baumer, H., Ducree, J., Zengerle, R., and von Stetten, F., A complete testing environment for the automated parallel performance characterization of biofuel cells: design, validation, and application, J. Appl. Electrochem., 2009, vol. 39, p. 1477.
  50. Astafev, E.A., Shkerin, S.N., Instruments for electrochemical impedance measurement: price–quality–functionality ratio, Alternativnaya energetica i ecologiya (in Russian), 2008, no. 2, p. 148.
  51. Mochalov, S.E., Nurgaliev, A.R., Antipin, A.V., Kuz’mina, E.V., and Kolosnitsyn, V.S., Electrochemical heat flow calorimeter, Russ. J. Electrochem., 2016, vol. 52, p. 449.
  52. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357.
  53. Scandurra, G., Giusi, G., and Ciofi, C., Multichannel amplifier topologies for high-sensitivity and reduced measurement time in voltage noise measurements, IEEE Trans. Instrum. Meas., 2013, vol. 62, p. 1145.
  54. Blanc, G., Gabrielli, C., and Keddam, M., Measurement of electrochemical noise by a cross correlation method, Electrochim. Acta, 1975, vol. 20, p. 687.
  55. Van der Ziel, A., Noise: Sources, Characterization, Measurement, Englewood Cliffs, NJ: Prentice-Hall, 1970, p. 54.
  56. Ciofi, C., Crupi, F., and Pace, C., A new method for high-sensitivity noise measurements, IEEE Trans. Instrum. Meas., 2002, vol. 51, no. 4, p. 656.
  57. Sampietro, M., Accomando, G., Fasoli, L.G., Ferrari, G., and Gatti, E.C., High sensitivity noise measurement with a correlation spectrum analyzer, IEEE Trans. Instrum. Meas., 2000, vol. 49, p. 820.
  58. Homborg, A.M., Tinga, T., van Westing, E.P.M., Zhang, Z., Ferrari, G.M., de Wit, J.H.W., and Mol, J.M.C., A critical appraisal of the interpretation of electrochemical noise for corrosion studies, Corrosion, 2014, vol. 70, p. 971.
  59. Rubio, M.A., Bethune, K., Urquia, A., and St-Pierre, J., Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise, Int. J. Hydrogen Energy, 2016, vol. 41, p. 14991.
  60. Bartlett, M.S., Smoothing periodograms from timeseries with continuous spectra, Nature, 1948, vol. 161, p. 686.
  61. Welch, P.D., The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust., 1967, vol. 15, p. 70.
  62. Cottis, R.A., Homborg, A.M., and Mol, J.M.C., The relationship between spectral and wavelet techniques for noise analysis, Electrochim. Acta, 2016, vol. 202, p. 277.