Examples



mdbootstrap.com



 
Статья
2021

The influence of the phosphine ligand nature on palladium catalysts in the norbornadiene allylation with allyl formate


S. A. DurakovS. A. Durakov, R. S. ShamsievR. S. Shamsiev, V. R. FlidV. R. Flid
Российский химический вестник
https://doi.org/10.1007/s11172-021-3213-4
Abstract / Full Text

The effect of the electronic and steric characteristics of phosphine ligands on the catalytic properties of palladium catalysts in the allylation of norbornadiene with allyl formate has been investigated. The activity and selectivity of catalysts formed in situ from palladium acetate and phosphines depend on the nature of the ligand. A certain lability of phosphine is required to achieve a high activity and the desired selectivity of the reaction. In addition, not more than one position in the coordination sphere of palladium can be occupied by the phophine-ligand. The key role of the ligand becomes evident at the β-hydride elimination step. The conditions for the selective production of 5-methylene-6-vinylnorbornene were determined.

Author information
  • M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 prosp. Vernadskogo, 119571, Moscow, Russian FederationS. A. Durakov, R. S. Shamsiev & V. R. Flid
References
  1. L.-C. Campeau, N. Hazari, Organometallics, 2019, 38, 3; DOI: https://doi.org/10.1021/acs.organomet.8b00720.
  2. Á. Sinai, D. Cs. Simkó, F. Szabó, A. Paczal, T. Gáti, A. Bényei, Z. Novák, A. Kotschy, Eur. J. Org. Chem., 2020, 9, 1122; DOI: https://doi.org/10.1002/ejoc.201901834.
  3. W. Keim, Russ. Chem. Bull., 2002, 51, 930; DOI: https://doi.org/10.1023/A:1019641013907.
  4. J. D. Moseley, P. M. Murray, J. Chem. Technol. Biotechnol., 2014, 89, 623; DOI: https://doi.org/10.1002/jctb.4306.
  5. K. Wu, A. G. Doyle, Nature Chem., 2017, 9, 779; DOI: https://doi.org/10.1038/nchem.2741.
  6. I. Guerrero Rios, A. Rosas-Hernandez, E. Martin, Molecules, 2011, 16, 970; DOI: https://doi.org/10.3390/molecules16010970.
  7. A. Yu. Shabalin, N. Yu. Adonin, V. V. Bardin, V. N. Parmon, Tetrahedron, 2014, 70, 3720; DOI: https://doi.org/10.1016/j.tet.2014.04.019.
  8. Y. Chen, H. Peng, Y.-X. Pi, T. Meng, Z.-Y. Lian, M.-Q. Yan, Y. Liu, S.-H. Liu, G.-A. Yu, Org. Biomol. Chem., 2015, 13, 3236; DOI: https://doi.org/10.3390/molecules16010970.
  9. K. H. Shaughnessy, Curr. Org. Chem., 2020, 24, 231; DOI: https://doi.org/10.2174/1385272824666200211114540.
  10. T. Colacot, New Trends in Cross-Coupling: Theory and Applications, Royal Society of Chemistry, Cambridge, 2014, 864 pp.
  11. K. H. Shaughnessy, Isr. J. Chem., 2020, 60, 180; DOI: https://doi.org/10.1002/ijch.201900067.
  12. C. A. Tolman, Chem. Rev., 1977, 77, 313; DOI: https://doi.org/10.1021/cr60307a002.
  13. C. A. Tolman, J. Am. Chem. Soc., 1970, 92, 2953; DOI: https://doi.org/10.1021/ja00713a006.
  14. P. Dierkes, P. W. N. M. van Leeuwen, J. Chem. Soc., Dalton Trans., 1999, 10, 1519; DOI: https://doi.org/10.1039/A807799A.
  15. P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes, Chem. Rev., 2000, 100, 2741; DOI: https://doi.org/10.1021/cr9902704.
  16. T. Allman, R. G. Goel, Canad. J. Chem., 1982, 60, 716; DOI: https://doi.org/10.1139/v82-106.
  17. E. Gioria, J. M. Martínez-Ilarduya, P. Espinet, Organometallics, 2014, 33, 4394; DOI: https://doi.org/10.1021/om5005379.
  18. M. K. Yılmaz, S. İnce, S. Yılmaz, M. Keleş, Inorgan. Chim. Acta, 2018, 482, 252; DOI: https://doi.org/10.1016/j.ica.2018.06.013.
  19. P. Y. Choy, O. Y. Yuen, M. P. Leung, W. K. Chow, F. Y. Kwong, Eur. J. Org. Chem., 2020, 2020, 2846; DOI: https://doi.org/10.1002/ejoc.202000068.
  20. J. R. Naber, S. L. Buchwald, Adv. Synth. Catal., 2008, 350, 957; DOI: https://doi.org/10.1002/adsc.200800032.
  21. N. A. Lagoda, E. V. Larina, E. V. Yarosh, A. A. Kurokhtina, A. F. Schmidt, Russ. Chem. Bull., 2019, 68, 817; DOI: https://doi.org/10.1007/s11172-019-2490-7.
  22. C. A. Busacca, D. Grossbach, R. C. So, E. M. O’Brie, E. M. Spinelli, Org. Lett., 2003, 5, 595; DOI: https://doi.org/10.1021/ol0340179.
  23. L. R. Moore, E. C. Western, R. Craciun, J. M. Spruell, D. A. Dixon, K. P. O’Halloran, K. H. Shaughnessy, Organometallics, 2008, 27, 576; DOI: https://doi.org/10.1021/om7008606.
  24. S. M. Crawford, C. B. Lavery, M. Stradiotto, Chem. Eur. J., 2013, 19, 16760; DOI: https://doi.org/10.1002/chem.201302453.
  25. S. Doherty, J. G. Knight, J. P. McGrady, A. M. Ferguson, N. A. B. Ward, R. W. Harrington, W. Clegg, Adv. Synth. Catal., 2010, 352, 201; DOI: https://doi.org/10.1002/adsc.200900577.
  26. V. R. Flid, S. A. Durakov, T. A. Morozova, Russ. Chem. Bull., 2016, 65, 2639; DOI: https://doi.org/10.1007/s11172-016-1629-z.
  27. V. R. Flid, M. L. Gringolts, R. S. Shamsiev, E. Sh. Finkelshtein, Russ. Chem. Rev., 2018, 87, 1169; DOI: https://doi.org/10.1070/RCR4834.
  28. S. A. Durakov, R. S. Shamsiev, V. R. Flid, A. E. Gekhman, Russ. Chem. Bull., 2018, 67, 2234; DOI: https://doi.org/10.1007/s11172-018-2361-7.
  29. S. A. Durakov, R. S. Shamsiev, V. R. Flid, A. E. Gekhman, Kinet. Catal. (Engl. Transl.), 2019, 60, 245; DOI: https://doi.org/10.1134/S0023158419030042.
  30. S. A. Durakov, P. V. Melnikov, E. M. Martsinkevich, A. A. Smirnova, R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2021, 70, 113; DOI: https://doi.org/10.1007/s11172-021-3064-z.
  31. K. T. Egiazaryan, R. S. Shamsiev, V. R. Flid, Fine Chem. Technol. (Engl. Transl.), 2019, 14, 56; DOI: https://doi.org/10.32362/2410-6593-2019-14-6-56-65.
  32. R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2020, 69, 653; DOI: https://doi.org/10.1007/s11172-020-2813-8.
  33. W. L. F. Armarego, Purification of Laboratory Chemicals, 8th ed., Butterworth-Heinemann, Oxford, 2017, 1176 pp.
  34. E. M. Evstigneeva, O. S. Manulik, V. R. Flid, I. P. Stolyarov, N. Yu. Kozitsyna, M. N. Vargaftik, I. I. Moiseev, Russ. Chem. Bull., 2004, 53, 1345; DOI: https://doi.org/10.1023/B:RUCB.0000042298.81687.dd.
  35. I. P. Stolyarov, L. I. Demina, N. V. Cherkashina, Russ. J. Inorg. Chem., 2011, 56, 1532; DOI: https://doi.org/10.1134/S003602361110024X.
  36. U. M. Dzhemilev, R. I. Khusnutdinov, D. K. Galeev, O. M. Nefedov, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 122; DOI: https://doi.org/10.1007/BF00953861.
  37. I. P. Stolyarov, A. E. Gekhman, I. I. Moiseev, A. Yu. Kolesnikov, E. M. Evstigneeva, V. R. Flid, Russ. Chem. Bull., 2007, 56, 320; DOI: https://doi.org/10.1007/s11172-007-0052-x.
  38. U. M. Dzhemilev, A. R. Akhmetov, A. A. Khuzin, V. A. D’yakonov, L. U. Dzhemileva, M. M. Yunusbaeva, L. M. Khalilov, A. R. Tuktarov, Russ. Chem. Bull., 2019, 68, 1036; DOI: https://doi.org/10.1007/s11172-019-2516-1.