Examples



mdbootstrap.com



 
Статья
2021

Enhanced Optical and Electrical Properties of Graphene Oxide-Silver Nanoparticles Nanocomposite Film by Thermal Annealing in the Air


Ram Sevak SinghRam Sevak Singh, Aseem RasheedAseem Rasheed, Anurag GautamAnurag Gautam, Arun Kumar SinghArun Kumar Singh, Varun RaiVarun Rai
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221030186
Abstract / Full Text

Here, we report the enhanced optical and electrical properties of graphene oxide-silver nanoparticles (GO-AgNPs) nanocomposite due to thermal annealing in air at different temperatures (150, 250, and 350°C). Our findings show that the optical properties of the GO-AgNPs film strongly depend on the annealing temperature. With an increase in annealing temperature, the optical absorption band and photoluminescence (PL) band are monotonically shifted towards a longer wavelength with a slight increase in absorbance. Interestingly, annealing of the nanocomposite film at 350°C in the air results in the nitrogen-doping from air into GO lattice. Unlike the PL bands in the near-ultraviolet (UV) range in cases of GO-AgNPs annealed at 150 and 250°C, this film exhibits pronounced multiple PL bands in the visible range, which are attributed to optical transitions associated with the localized nitrogen defects incorporated from air under thermal annealing and charge transfer between AgNPs and carbon. Mechanisms of the observed optical properties are also discussed. Furthermore, thermal annealing of the film also affects its electrical properties. The sheet resistance of the film reduces with the increase of annealing temperature and its lowest value ~ 21 Ω/□ with transmittance ~ 82% at 550 nm is achieved at 350°C.

Author information
  • Department of Physics, O P Jindal University, Raigarh, 496109, Chhattisgarh, IndiaRam Sevak Singh
  • Department of Physics, National Institute of Technology Kurukshetra, 136119, Haryana, IndiaRam Sevak Singh & Aseem Rasheed
  • Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal, Hyderabad, 501301, Telangana, IndiaAnurag Gautam
  • Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, IndiaArun Kumar Singh
  • School of Materials Science and Engineering, Nanyang Technological University Block N4.1, 639798, Nanyang, SingaporeVarun Rai
References
  1. Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A., Nat. Photonics, 2010, vol. 4, p. 611. https://doi.org/10.1038/nphoton.2010.186
  2. Singh, R.S., Nalla, V., Chen, W., Wee, A.T.S., and Ji, W., ACS Nano, 2011, vol. 5, no. 7, p. 5969. https://doi.org/10.1021/nn201757
  3. Singh, R.S., Li, D., Xiong, Q., Santoso, I., Yu, X., Chen, W., Rusydi, A., and Wee, A.T.S., Carbon, 2016, vol. 106, p. 330. https://doi.org/10.1016/j.carbon.2016.05.026
  4. Singh, R.S., Nalla, V., Chen, W., Ji, W., and Wee, A.T.S, Appl. Phys. Lett., 2012, vol. 100, no. 9, p. 093116. https://doi.org/10.1063/1.3692107
  5. Singh, R.S., Gautam, A., and Rai, V., Front. Mater. Sci., 2019, vol.13, no. 3 , p. 217. https://doi.org/10.1007/s11706-019-0465-0
  6. Singh, R.S., Wang, X., Chen, W., and Wee, A.T.S, Appl.Phys. Lett., 2012, vol. 101, no. 18 , p. 183105. https://doi.org/10.1063/1.4765656
  7. Santoso, I., Singh, R.S., Gogoi, P.K., Asmara, T.C., Wei, D., Chen, W., Wee, A.V.S, Pereira, V.M., and Rusydi, A., Phys. Rev. B, 2014, vol. 89, no. 7, p. 075134. https://doi.org/10.1103/PhysRevB.89.075134
  8. Singh, A.K., Iqbal, M.W., Singh, V.K., Iqbal, M.Z., Lee, J.H., Chun, S.-H., Shin, K., and Eom, J., J. Mater. Chem. 2012, vol. 22, no. 30, p. 15168-15174. https://doi.org/10.1039/C2JM32716C
  9. Andleeb, S., Eom, J., Naz, N.R., and Singh, A.K., J. Mater. Chem. C, 2017, vol. 5, no. 32, p. 8308. https://doi.org/10.1039/C7TC01736G
  10. Chandrashekar, B.N., Deng, B., Smitha, A.S., Chen, Y., Tan, C., Zhang, H., Peng, H., and Liu, Z., Adv. Mater., 2015, vol. 27, no. 35, p. 5210. https://doi.org/10.1002/adma.201502560
  11. Gokus, T., Nair, R., Bonetti, A., Bohmler, M., Lombardo, A., Novoselov, K., Geim, A., Ferrari, A., and Hartschuh, A., ACS Nano, 2009, vol. 3, no. 12, p. 3963. https://doi.org/10.1021/nn9012753
  12. Gao, W., The Chemistry of Graphene Oxide. In Graphene Oxide, New York: Springer, 2015. https://doi.org/10.1007/978-3-319-15500-5_3
  13. Rai, V., Tiwari, N., Rajput, M., Joshi, S.M., Nguyen, A.C., and Mathews, N., Electrochim. Acta, 2017, vol. 255, p. 63. https://doi.org/10.1016/j.electacta.2017.09.08
  14. Gautam, A. and Ram, S., Mater. Chem. Phys., 2010, vol. 119, no. 1–2, p. 266. https://doi.org/10.1016/j.matchemphys.2009.08.050
  15. Gautam, A. and Ram, S., J. Alloys Compd., 2008, vol. 463, no. 1–2, p. 428. https://doi.org/10.1016/j.jallcom.2007.09.051
  16. Kumar, P.V., Bardhan, N.M., Tongay, S., Wu, J., Belcher, A.M., and Grossman, J.C., Nat. Chem., 2014, vol. 6, no. 2, p. 151. https://doi.org/10.1038/nchem.1820
  17. Chien, C.T., Li, S.S., Lai, W.J., Yeh, Y.C., Chen, H.A., Chen, I.S., Chen, L.C., Chen, K.H., Nemoto, T., and Isoda, S., Angew. Chem. Int. Ed., 2012, vol. 51, no. 27, p. 6662. https://doi.org/10.1002/anie.20120047
  18. Cote, L.J., Cruz-Silva, R., and Huang, J., J. Am. Chem. Soc., 2009, vol. 131, no. 31, p. 11027. https://doi.org/10.1021/ja902348k
  19. Zhuo, Q., Gao, J., Peng, M., Bai, L., Deng, J., Xia, Y., Ma, Y., Zhong, J., and Sun, X., Carbon, 2013, vol. 52, no. , p. 559. https://doi.org/10.1016/j.carbon.2012.10.01
  20. Kononenko, V., Kunert, H., Manak, I., and Ushakov, D., J. Appl. Spectrosc., 2003, vol. 70, no. 1, p. 115. https://doi.org/10.1023/A:1023236912043
  21. Singh, R. S. and Solanki, A., Phys. Lett. A, 2016, vol. 380, no. 11-12, p. 1201. https://doi.org/10.1016/j.physleta.2016.01.029
  22. Singh, R.S., Mater. Res. Exp., 2016, vol. 3, no. 7, p. 075014. https://doi.org/10.1088/2053-1591/3/7/075014
  23. Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M., and Ohba, M., Carbon, 2004, vol. 42, no. 14, p. 2929. https://doi.org/10.1016/j.carbon.2004.07.003
  24. Baby, T.V. and Ramaprabhu, S., J. Mater. Chem., 2011, vol. 21, no. 26, p. 9702. https://doi.org/10.1039/C0JM04106H
  25. Abdolhosseinzadeh, S., Asgharzadeh, H., and Kim, H.S., Sci. Rep., 2015, vol. 5, p. 10160. https://doi.org/10.1038/srep10160
  26. Sun, X.-F., Qin, J., Xia, P.-F., Guo, B.-B., Yang, C.-M., Song, C., Wang, S.-G., Chem. Eng.J., 2015, vol. 281, p. 53. https://doi.org/10.1016/j.cej.2015.06.05
  27. Stankovich, S., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Carbon, 2006, vol. 44, no. 15, p. 3342. https://doi.org/10.1016/j.carbon.2006.06.004
  28. Kumar, M.P., Kesavan, T., Kalita, G., Ragupathy, P., Narayanan, T.N., and Pattanayak, D.K., RSC Adv., 2014, vol. 4, no. 73, p. 38689. https://doi.org/10.1039/C4RA04927
  29. Xu, X., Yuan, T., Zhou, Y., Li, Y., Lu, J., Tian, X., Wang, D., and Wang, J., Int. J. Hydrogen Energy, 2014, vol. 39, no. 28, p. 16043. https://doi.org/10.1016/j.ijhydene.2013.12.07
  30. Gautam, A., Singh, G., and Ram, S., Synth. Met., 2007, vol. 157, no. 1, p. 5. https://doi.org/10.1016/j.synthmet.2006.11.009
  31. Cai, D. and Song, M., J. Mater. Chem., 2007, vol. 17, no. 35, p. 3678. https://doi.org/10.1039/B705906J
  32. Gomez De Arco, L., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., and Zhou, C., ACS Nano, 2010, vol. 4, no. 5, p. 2865. https://doi.org/10.1021/nn901587
  33. Wang, X., Zhi, L., and Müllen, K., Nano Lett., 2008, vol. 8, no. 1, p. 323. https://doi.org/10.1021/nl072838r
  34. Sa, K. and Mahanandia, P., Thin Solid Films, 2019, vol. 692, p. 137594. https://doi.org/10.1016/j.tsf.2019.137594
  35. King, P.J., Khan, U., Lotya, M., De, S., and Coleman, J.N., ACS Nano, 2010, vol. 4, no. 7, p. 4238. https://doi.org/10.1021/nn100542z
  36. Jo, K., Lee, T., Choi, H.J., Park, J.H., Lee, D.J., Lee, D.W., and Kim, B.-S., Langmuir, 2011, vol. 27, no. 5, p. 2014. https://doi.org/10.1021/la104420p
  37. Wang, T., Jing, L.-C., Zhu, Q., Ethiraj, A.S., Tian, Y., Zhao, H., Yuan, X.-T., Wen, J.-G., Li, L.-K., and Geng, H.-Z., Appl. Surf. Sci., 2020, vol. 500, p. 143997. https://doi.org/10.1016/j.apsusc.2019.14399
  38. Meenakshi, P., Karthick, R., Selvaraj, M., and Ramu, S., Sol. Energy Mater. Sol. Cells, 2014, vol. 128, p. 264. https://doi.org/10.1016/j.solmat.2014.05.013
  39. Zhang, Y., Bai, S., Chen, T., Yang, H., and Guo, X., Mater. Res. Exp., 2020, vol. 7, no. 1, ID 016413. https://doi.org/10.1088/2053-1591/ab6262
  40. Chae, W.H., Sannicolo, T., and Grossman, J.C., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 15, p. 17909. https://doi.org/10.1021/acsami.0c03587