High Energy Density Electrode Materials with the Disordered Rocksalt Structure

N. V. Kosova N. V. Kosova , K. V. Mishchenko K. V. Mishchenko , O. A. Podgornova O. A. Podgornova , D. O. Semykina D. O. Semykina , A. A. Shindrov A. A. Shindrov
Российский электрохимический журнал
Abstract / Full Text

A study is carried out on how the composition of lithium-excess oxides of d metals with the disordered rocksalt structure formed in the \({\text{L}}{{{\text{i}}}_{{1 + 0.5y}}}{\text{Ti}}_{y}^{{4 + }}{\text{M}}{{{\text{n}}}_{{1 - 1.5y}}}{{{\text{O}}}_{2}}\) and \({\text{L}}{{{\text{i}}}_{{1 + y}}}{\text{Nb}}_{y}^{{5 + }}{\text{M}}{{{\text{n}}}_{{1 - 2y}}}{{{\text{O}}}_{2}}\) systems can affect the nature of redox pairs. The samples are synthesized by a mechanochemically assisted solid-state method with the annealing temperature of 950°С. The crystal structure, the morphology, and electrochemical properties are studied by the methods of X-ray diffraction, scanning electron microscopy, and galvanostatic cycling. The particle size in the Li1 + 0.5yTiyMn1 – 1.5yO2 and Li1 + yNbyMn1 – 2yO2 samples is found to be 1–5 and 0.5–3 µm, respectively. The further grinding together with carbon lowers the particle size to 0.3–0.5 µm. The charge–discharge cycling curves demonstrate two plateaus in the potential regions of 3.5–3.7 and 4.0–4.4 V, which are attributed to the multielectron process involving the Mn3+/Mn4+ and O2–/O redox pairs. It is shown that for the Li1 + 0.5yTiyMn1 – 1.5yO2 composites, the redox pair Mn3+/Mn4+ makes the main contribution to the discharge capacity, whereas in the case of Li1 + yNbyMn1 – 2yO2 the effect of both pairs Mn3+/Mn4+ and O2–/O is noticeable.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    N. V. Kosova, K. V. Mishchenko, O. A. Podgornova, D. O. Semykina & A. A. Shindrov

  1. Goodenough, J.B. and Park, K.S., The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 2013, vol. 135, p. 1167.
  2. Hosono, E., Kudo, T., Honma, I., Matsuda, H., and Zhou, H., Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density, Nano Lett., 2009, vol. 9(3), p. 1045.
  3. Huang, H., Yin, S.C., and Nazar, L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid-State Lett., 2001, vol. 4(10), p. A170.
  4. Lee, J., Urban, A., Li, X., Dong, S., Hautier, G., and Ceder, G., Unlicking the potential of cation disordered oxides for rechargeable lithium batteries, Science, 2014, vol. 343, p. 519.
  5. Yabuuchi, N., Nakayama, M., Takeuchi, M., Komaba, S., Hashimoto, Y., Mukai, T., Shiiba, H., Sato, K., Kobayashi, Y., Nakao, A., Yonemura, M., Yamanaka, K., Mitsuhara, K., and Ohta, T., Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries, Nat. Commun, 2016, vol. 7, p. 13814.
  6. Yabuuchi, N., Material design concept of lithium-excess electrode materials with rocksalt-related structures for rechargeable non-aqueous batteries, Chem. Rec., 2019, vol. 19, p. 690.
  7. Geng, F., Hu, B., Li, C., Zhao, C., Lafon, O., Trébosc, J., Amoureux, J.P., Shen M., and Hu, B., Anionic redox reactions and structural degradation in a cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode material revealed by solid-state NMR and EPR, J. Mater. Chem. A, 2020, vol. 8(32), p. 16515.
  8. Lin, H., Moreno, B., Kucuk, K., Zhang, S., Aryal, S., Li, Z., Segre, C.U., Rodriguez, J., Puthusseri, D., Cai, L., Jiao, X., and Pol, V.G., Fundamental understanding of high-capacity lithium-excess cathodes with disordered rock salt structure, J. Mater. Sci. Tech., 2021, vol. 74, p. 60.
  9. Wang, R., Huang, B., Qu, Z., Gong, Y., He, B., and Wang, H., Research on the kinetic properties of the cation disordered rock-salt Li-excess Li1.25Nb0.25Mn0.5O2 material, Solid State Ionics, 2019, vol. 339, p. 114999.
  10. Fan, X., Qin, Q., Liu, D., Dou, A., Su, M., Liu, Y., and Pan, J., Synthesis and electrochemical performance of Li3NbO4-based cation-disordered rock-salt cathode materials for Li-ion batteries, J. Alloys Compd., 2019, vol. 797, p. 961.
  11. Kobayashi, Y., Sawamura, M., Kondo, S., Harada, M., Noda, Y., Nakayama, M., Kobayakawa, S., Zhao, W., Nakao, A., and Yasui, A., Activation and stabilization mechanisms of anionic redox for Li storage applications: Joint experimental and theoretical study on Li2TiO3–LiMnO2 binary system, Mater. Today, 2020, vol. 37, p. 43.
  12. Yabuuchi, N., Takeuchi, M., Nakayama, M., Shiiba, H., Ogawa, M., Nakayama, K., Ohta, T., Endo, D., Ozaki, T., Inamasu, T., Sato, K., and Komaba, S., High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure, Proc. Natl. Acad. Sci. U. S. A, 2015, vol. 112(25), p. 7650.
  13. Chen, D., Kan, W.H., and Chen, G., Understanding performance degradation in cation-disordered rock-salt oxide cathodes, Adv. Energy Mater., 2019, vol. 9, p. 1901255.
  14. Seo, D. H., Lee, J., Urban, A., Malik, R., Kang, S., and Ceder, G., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials, Nature Chem., 2016, vol. 8(7), p. 692.