Статья
2019

Impedance of LiFe0.4Mn0.6PO4 Electrodes with Combined Conducting Polymer Binder of PEDOT:PSS and Carboxymethyl Cellulose


R. V. Apraksin R. V. Apraksin , S. N. Eliseeva S. N. Eliseeva , M. A. Kamenskii M. A. Kamenskii , E. G. Tolstopyatova E. G. Tolstopyatova , G. G. Lang G. G. Lang , V. V. Kondrat’ev V. V. Kondrat’ev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519110028
Abstract / Full Text

This work studies the electrochemical properties of cathodic materials for lithium–ion batteries based on mixed lithium–iron–manganese phosphate LiFe0.4Mn0.6PO4 (LFMP) obtained using a conducting binder containing poly-3,4-ethylenedioxythiophene : polystyrenesulfonate (PEDOT:PSS) and carboxymethyl cellulose (CMC). The results are compared with those for the material based on LiFe0.4Mn0.6PO4 manufactured with the conventional polyvinylidene fluoride (PVDF) binder. The electrode material with the PEDOT:PSS/CMC binder manifests enhanced functional characteristics as compared to electrodes with the conventional binder. It is found that replacement of the conventional binder by the combined conducting PEDOT:PSS/CMC binder in the LFMP-based cathodic material results in an increase in the specific capacity of the cathodic material. Particularly noticeable advantages of the material with respect to specific capacity are observed at high currents (up to 10 C), which can be explained by the increasing rate of the processes of material recharge due to a significant decrease in the charge transfer resistance and an increase in the apparent diffusion coefficient of the lithium ions.

Author information
  • St. Petersburg State University, University of Chemistry, 199034, St. Petersburg, Russia

    R. V. Apraksin, S. N. Eliseeva, M. A. Kamenskii, E. G. Tolstopyatova & V. V. Kondrat’ev

  • Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary

    G. G. Lang

References
  1. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1188.
  2. Yuan, L.X., Wang, Z.H., Zhang. W.X., Hu, X.L., Chen, J.T., Huang, Y.H., and Goodenough, J.B., Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energ. Environ. Sci., 2011, vol. 4, p. 269.
  3. Zaghib, K., Mauger, A., and Julien, C.M., Overview of olivines in lithium batteries for green transportation and energy storage, J. Solid State Electrochem., 2012, vol. 16, p. 835.
  4. Bruce, P.G., Scrosati, B., and Tarascon, J.M., Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, vol. 47, p. 2930.
  5. Yamada, A., and Chung, S.-C., Crystal chemistry of the olivine-type Li(MnyFe1 – y)PO4 and (MnyFe1 – y)PO4 as possible 4V cathode materials for lithium batteries, J. Electrochem. Soc., 2001, vol. 148, p. A960.
  6. Martha, S.K., Grinblat, J., Haik, O., Zinigrad, E., Drezen, T., Miners, J.H., Exnar, I., Kay, A., Markovsky, B., and Aurbach D., LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2009, vol. 48, p. 8559.
  7. Yan, S.Y., Wang, C.Y., Gu, R.M., Sun, S., and Li M.W., Synergetic Fe substitution and carbon connection in LiMn1–xFexPO4/C cathode materials for enhanced electrochemical performances, J. Alloys Compd., 2015, vol. 628, p. 471.
  8. Kosova, N.V., Devyatkina, E.T., Ancharov, A.I., Markov, A.V., Karnaushenko, D.D., and Makukha, V.K., Structural studies of nanosized LiFe0.5Mn0.5PO4 under cycling by in situ synchrotron diffraction, Solid State Ionics, 2012, vol. 225, p. 564.
  9. Zaghib, K., Mauger, A., Gendron, F., Massot, M., and Julien, C.M., Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries, Ionics, 2008, vol. 14, p. 371.
  10. Bezza, I., Kaus, M., Heinzmann, R., Yavuz, M., Knapp, M., Mangold, S., Doyle, S., Grey, C.P., Ehrenberg, H., Indris, S., and Saadoune, I., Mechanism of the delithiation/lithiation process in LiFe0.4Mn0.6PO4: in situ and ex situ investigations on long-range and local structures, J. Phys. Chem. C, 2015, vol. 119, p. 9016.
  11. Hoshina, K., Sasakawa, T., Takami, N., Munakata, H., and Kanamura, K., Lithium diffusion in cation-mixing-free LiMn1–xFexPO4 synthesized by hydrothermal process, J. Electrochem. Soc., 2015, vol. 162, p. A2827.
  12. Wang, K., Hou, M., Yuan, S., Yu, H., Wang, Y., Wang C., and Xia Y., An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates, Electrochem. Commun., 2015, vol. 55, p. 6.
  13. Drozhzhin, O.A., Sumanov, V.D., Karakulina, O.M., Abakumov, A.M., Hadermann, J., Baranov, A.N., Stevenson, K.J., and Antipov, E.V., Switching between solid solution and two-phase regimes in the Li1 – xFe1 – yMnyPO4 cathode materials during lithium (de)insertion: Combined PITT, in situ XRPD and electron diffraction tomography study, Electrochim. Acta, 2016, vol. 191, p. 149.
  14. Yang, L., Xia, Y., Qin, L., Yuan, G., Qiu, B., Shi, J., and Liu, Z., Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery, J. Power Sources, 2016, vol. 304, p. 293.
  15. Yang, L., Xia, Y., Fan, X., Qin, L., Qiu, B., and Liu, Z., Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery, Electrochim. Acta, 2016, vol. 191, p. 200.
  16. Mi, C.H., Zhang, X.G., Zhao, X.B., and Li, H.L., Synthesis and performance of LiMn0.6Fe0.4PO4/nano-carbon composite cathode, Mater. Sci. Eng. B, 2006, vol. 129, p. 8.
  17. Liu, J., Liao, W., and Yu, A., Electrochemical performance and stability of LiMn0.6Fe0.4PO4/C composite, J. Alloys Compd., 2014, vol. 587. p. 133.
  18. Yan, S.-Y., Wang, C.-Y., Gu, R.-M., and Li, M.-W., Enhanced kinetic behaviors of LiMn0.5Fe0.5PO4/C cathode material by Fe substitution and carbon coating, J. Solid State Electrochem., 2015, vol. 19, p. 2943.
  19. Wang, G.X., Yang, L., Bewlay, S.L., Chen, Y., Liu, H.K., and Ahn, J.H., Electrochemical properties of carbon coated LiFePO4 cathode materials, J. Power Sources, 2005, vol. 146, p. 521.
  20. Lepage, D., Michot, C., Liang, G., Gauthier, M., and Schougaard S.B., A soft chemistry approach to coating of LiFePO4 with a conducting polymer, Angew. Chem. Int. Ed., 2011, vol. 50, p. 6884.
  21. Cintora-Juarez, D., Perez-Vicente, C., Ahmad, S., and Tirado, J.L., Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating, RSC Adv., 2014, vol. 4, p. 26108.
  22. Das, P.R., Komsiyska, L., Osters, O., and Wittstock, G., PEDOT:PSS as a functional binder for cathode in lithium ion batteries, J. Electrochem. Soc., 2015, vol. 162, p. A674.
  23. Vicente, N., Haro, M., Cíntora-Juárez, D., Pérez-Vicente, C., Tirado, J.L., Ahmad, S., and Garcia-Belmonte, G., LiFePO4 particle conductive composite strategies for improving cathode rate capability, Electrochim. Acta, 2015, vol. 163, p. 323.
  24. Gong, C.L., Deng, F.L., Tsui, C.P., Xue, Z.G., Ye, Y.S., Tang, C.Y., Zhou, X.P., and Xie, X.L., PANI-PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 19315.
  25. Wang, G.X., Yang, L., Chen, Y., Wang, J.Z., Bewlay, S., and Liu, H.K., An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries, Electrochim. Acta, 2005, vol. 50, p. 4649.
  26. Eliseeva, S.N., Levin, O.V., Tolstopjatova, E.G., Alekseeva, E.V., Apraksin, R.V., and Kondratiev, V.V., New functional conducting poly-3,4-ethylenedioxythiopene: polystyrenesulfonate/carboxymethyl cellulose binder for improvement of capacity of LiFePO4-based cathode materials, Mater. Lett., 2015, vol. 161, p. 117.
  27. Levin, O.V., Eliseeva, S.N., Alekseeva, E.V., Tolstopjatova, E.G., and Kondratiev, V.V., Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components, Int. J. Electrochem. Sci., 2015, vol. 10, p. 8175.
  28. Eliseeva, S.N., Apraksin, R.V., Tolstopjatova, E.G., and Kondratiev, V.V., Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene/polystyrene sulfonate, Electrochim. Acta, 2017, vol. 227, p. 357.
  29. Apraksin, R.V., Eliseeva, S.N., Tolstopjatova, E.G., Rumyantsev, A.M., Zhdanov, V.V., and Kondratiev, V.V., High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene):poly(styrene sulfonate)/carboxymethylcellulose, Mater. Lett., 2016, vol. 176, p. 248.
  30. Ravnsbaek, D.B., Xiang, K., Xing, W., Borkiewicz, O.J., Wiaderek, K.M., Gionet, P., Chapman, K.W., Chupas, P.J., and Chiang Y.-M., Extended solid solutions and coherent transformations in nanoscale olivine cathodes, Nano Lett., 2014, vol. 14, p. 1484.
  31. Lu, D., Li, W., Zuo, X., Yuan, Z., and Huang, Q., Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 < x < 1) by electrochemical impedance spectroscopy, J. Phys. Chem. C, 2007, vol. 111, p. 12067.
  32. Levi, M.D., Salitra, G., Markovsky, B., Teller, H., Aurbach, D., Heider, U., and Heider, L., Solid-state electrochemical kinetics of Li-ion intercalation into Li1 – xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS, J. Electrochem. Soc., 1999, vol. 146, p. 1279.
  33. Schmidt, J.P., Chrobak, T., Ender, M., Illig, J., Klotz, D., and Ivers-Tiffée, E., Studies on LiFePO4 as cathode material using impedance spectroscopy, J. Power Sources, 2011, vol. 196, p. 5349.
  34. Lee, S., Cho, Y., Song, H.K., Lee, K.T., and Cho, J., Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries, Angew. Chem. Int. Ed., 2012, vol. 51, p. 8748.
  35. Yang, X., Xu, Y., Zhang, H., Huang, Y., Jiang, Q., and Zhao C., Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, Electrochim. Acta, 2013, vol. 114, p. 259.
  36. Levi, M.D., Lu, Z., and Aurbach, D., Application of finite-diffusion models for the interpretation of chronoamperometric and electrochemical impedance responses of thin lithium insertion V2O5 electrodes, Solid State Ionics, 2001, vol. 143, p. 309.
  37. Thomas M.G.S.R., Bruce, P.G., and Goodenough, J.B., AC Impedance analysis of polycrystalline insertion electrodes: Application to Li1 – xCoO2, J. Electrochem. Soc., 1985, vol. 132, p. 1521.