Статья
2021

Petroleum Coke as the Active Material for Negative Electrodes in Lithium–Sulfur Batteries


E. V. Kuz’mina E. V. Kuz’mina , E. V. Karaseva E. V. Karaseva , N. V. Chudova N. V. Chudova , A. L. Ivanov A. L. Ivanov , V. S. Kolosnitsyn V. S. Kolosnitsyn
Российский электрохимический журнал
https://doi.org/10.1134/S102319352103006X
Abstract / Full Text

The possibility of using carbon materials based on petroleum coke as the cheap and available active material for negative electrodes of lithium–sulfur rechargeable batteries is considered. The comparative studies of characteristics of lithium–sulfur cells with negative electrodes based on metal lithium, graphite, and petroleum coke are carried out. It is found that heat-treated petroleum coke can be successfully used as the active material for negative electrode of lithium–sulfur batteries with acceptable energy characteristics. All other conditions being the same, the lithium–sulfur cells with negative electrodes based on petroleum coke demonstrate the longer cyclability as compared with cells based on metal lithium or graphite. This is explained by the slower destruction of electrolyte components on the negative electrode during cycling of lithium–sulfur cells. It is shown that the use of negative electrodes based on petroleum coke in lithium–sulfur batteries allows their cyclability to be increased and their cost to be reduced.

Author information
  • Ufa Institute of Chemistry UFRC RAS, 450054, Ufa, Russia

    E. V. Kuz’mina, E. V. Karaseva, N. V. Chudova, A. L. Ivanov & V. S. Kolosnitsyn

References
  1. Fan, L., Deng, N., Yan, J., Li, Z., Kang, W., and Cheng, B., The recent research status quo and the prospect of electrolytes for lithium sulfur batteries, Chem. Eng. J., 2019, vol. 369, p. 874. https://doi.org/10.1016/j.cej.2019.03.145
  2. Wang, H.C., Cao, X., Liu, W., and Sun, X., Research progress of the solid state lithium–sulfur batteries, Front. Energy Res., 2019, no. 112. https://doi.org/10.3389/fenrg.2019.00112
  3. Liang, X., Yun, J., Wang, Y., Xiang, H., Sun, Y., Feng, Y., and Yu, Y., A new high-capacity and safe energy storage system: lithium-ion sulfur batteries, Nanoscale, 2019, vol. 11, no. 19140. https://doi.org/10.1039/c9nr05670j
  4. Li, F., Liu, Q., Hu, J, Feng, Y., He, P., and Ma, J., Recent advances in cathode materials for rechargeable lithium–sulfur batteries, Nanoscale, 2019, vol. 11, no. 15418. https://doi.org/10.1039/c9nr04415a
  5. Zeng, P., Han, Y., Duan, Z., Jia, G., Huang, L., and Chen, Y., A stable graphite electrode in superconcentrated LiTFSI-DME/DOL electrolyte and its application in lithium-sulfur full battery, Mater. Res. Bull., 2017, vol. 95, p. 61. https://doi.org/10.1016/j.materresbull.2017.07.018
  6. Xiong, X., Yan, W., You, C., Zhu, Y., Chen, Y., Fu, L., Zhang, Y., Yu, N., and Wu, Y., Methods to improve lithium metal anode for Li–S batteries, Front. Chem., 2019, vol. 7, article 827. https://doi.org/10.3389/fchem.2019.00827
  7. Fu, Y., Su, Y.S., and Manthiram, A., Li2S–carbon sandwiched electrodes with superior performance for lithium–sulfur batteries, Adv. Energy Mater., 2014, vol. 4, no. 1300655. https://doi.org/10.1002/aenm.201300655
  8. Wu, Y., Momma, T., Yokoshima, T., Nara, H., and Osaka, T., High performance sulfur graphite full cell for next generation sulfur Li-ion battery, J. Power Sources, 2018, vol. 388, p. 5. https://doi.org/10.1016/j.jpowsour.2018.03.051
  9. Shi, P., Zhou, X., Wang, Y., Liang, X., Sun,Y., Cheng, S., Chen, C., and Xiang, H., Advanced lithium ion sulfur battery based on spontaneous electrochemical exfoliation/lithiation of graphite in nonaqueous electrolytes, ACS Appl. Energy Mater., 2019, vol. 2, no. 5, p. 3798. https://doi.org/10.1021/acsaem.9b00480
  10. Karaseva, E. and Kolosnitsyn, V., Patent EP 1 867 000 B1, Eur. Pat. Bul., 2011, vol. 40.
  11. Liu, J., Nara, H., Yokoshima, T., Momma, T., and Osaka, T., Micro-scale Li2S–C composite preparation from Li2SO4 for cathode of lithium ion battery, Electrochim. Acta, 2015, vol. 183, p. 70. https://doi.org/10.1016/j.electacta.2015.07.116
  12. Li, Z., Zhang, S., Zhang, C., Ueno, K., Yasuda, T., Tatara, R., Dokko, K., and Watanabe, M., One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li2S/graphene composite for lithium–sulfur batteries, Nanoscale, 2015, vol. 7, p. 14385. https://doi.org/10.1039/c5nr03201f
  13. Ye, F., Noh, H., Lee, J., Lee, H., and Kim, H.-T., Li2S/carbon nanocomposite strips from a low-temperature conversion of Li2SO4 as high-performance lithium–sulfur cathodes, J. Mater. Chem. A, 2018, vol. 6, p. 6617. https://doi.org/10.1039/c8ta00515j
  14. Shi, J., Zhang, J., Zhao, Y., Yan, Z., Hart, N., and Guo, J., Synthesis of Li2S–carbon cathode materials via carbothermic reduction of Li2SO4, Front. Energy Res., 2019, vol. 7, no. 53. https://doi.org/10.3389/fenrg.2019.00053
  15. Karaseva, E.V., Sheina, L.V., and Kolosnitsyn, V.S., Synthesis of lithium sulfide by carbothermic reduction of lithium sulfate with petroleum coke, Russ. J. App. Chem., 2021, vol. 94, no. 1, p. 5. https://doi.org/10.31857/S0044461821010011
  16. Wang, C., Cai, W., Li, G., Liu, B., and Li, Z., In-situ synthesis of Li2S-loaded amphiphilic porous carbon and modification of Li2S electrode for long-life Li2S battery, ChemElectroChem, 2018, vol. 5, no. 1, p. 112. https://doi.org/10.1002/celc.201700914
  17. Chae, S., Choi, S.-H., Kim, N., Sung, J., and Cho, J., Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 2019, vol. 59, no. 1, p. 110. https://doi.org/10.1002/anie.201902085
  18. Borah, R., Hughson, F.R., Johnston, J., and Nann, T., On battery materials and methods, Mater. Today: Advances, 2020, vol. 6, no. 100046. https://doi.org/10.1016/j.mtadv.2019.100046
  19. Buiel, E. and Dahn, J.R., Li-insertion in hard carbon anode materials for Li-ion batteries, Electrochim. Acta, 1999, vol. 45, no. 1–2, p. 121. https://doi.org/10.1016/S0013-4686(99)00198-X
  20. Väli, R., Jänes, A., Thomberg, T., and Lust, E., Synthesis and characterization of D-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries, Electrochim. Acta, 2017, vol. 253, p. 536. https://doi.org/10.1016/j.electacta.2017.09.094
  21. Sun, H., He, X., Ren, J., Li, J., Jiang, C., and Wan, C., Hard carbon/lithium composite anode materials for Li-ion batteries, Electrochim. Acta, 2007, vol. 52, no. 13, p. 4312. https://doi.org/10.1016/j.electacta.2006.12.012
  22. Zhang, J., Liu, X., Wang, J., Shi, J., and Shi, Z., Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors, Electrochim. Acta, 2016, vol. 187, p. 134. https://doi.org/10.1016/j.electacta.2015.11.055
  23. Kim, J.-H., Kim, J.-S., Lim, Y.-G., Lee, J.-G., and Kim, Y.-J., Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors, J. Power Sources, 2011, vol. 196, no. 23, p. 10490. https://doi.org/10.1016/j.jpowsour.2011.08.081
  24. Gourdin, G., Smith, P.H., Jiang, T., Tran, T.N., and Qu, D., Lithiation of amorphous carbon negative electrode for Li-ion capacitor, J. Electroanalyt. Chem., 2013, vol. 688, p. 103. https://doi.org/10.1016/j.jelechem.2012.08.029
  25. Li, B., Zheng, J., Zhang, H., Jin, L., Yang, D., Lv, H., Shen, C., Shellikeri, A., Zheng, Y., Gong, R., Zheng, J.P., and Zhan, C., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors, Adv. Mater., 2018, vol. 30, no. 1705670. https://doi.org/10.1002/adma.201705670
  26. Kuz’mina, E.V., Dmitrieva, L.R., Karaseva, E.V., and Kolosnitsyn, V.S., On the possibility of applying the dye sorption method to determine the specific surface area of carbon materials for lithium–sulfur batteries, Izv. Ufim. Nauch. Tsentra RAN, (in Russian) 2020, no. 2, p. 29. https://doi.org/10.31040/2222-8349-2020-0-2-29-34
  27. Kuzmina, E., Karaseva, E., Ivanov, A., and Kolosni-tsyn, V., On the factors affecting aging and self-discharge of lithium–sulfur cells. Effect of positive electrode composition, Energy Technol., 2019, no. 1900134. https://doi.org/10.1002/ente.201900134
  28. Mochalov, S.E., Antipin, A.V., Nurgaliev, A.R., and Kolosnitsyn, V.S., Multichannel potentiostat-galvanostat for cycling of batteries and electrochemical cells, Elektrokhim. Energ., 2015, no. 1(15), p. 45.
  29. Kolosnistyn, D.V., RF Inventor’s Certificate no. 2019611773, 2019.
  30. Kolosnitsyn, D.V., Kuz’mina E.V., and Karaseva, E.V., Data processing automatization of electrochemical studies of battery cells, Elektrokhim. Energ., 2019, no. 19(4), p. 186. https://doi.org/10.18500/1608-4039-2019-19-4-186-197
  31. Kolosnitsyn, D.V., RF Inventor’s Certificate no. 2019611983, 2019.
  32. Kuzmina, E., Chudova, N., Prosochkina, T., Karaseva, E., and Kolosnitsyn, V., Electrochemical properties of petroleum coke as active material of negative electrode in lithium batteries, Abstracts of Papers, 235th ECS Meeting, Dallas, 2019, abstract no. MA2019-01 236. http://ma.ecsdl.org/content/ MA2019-01/2/236.abstract?sid=9872a494-ecdb-4c30-91f2-8860f1c27031.
  33. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., and Tascón, J.M.D., Raman microprobe studies on carbon materials, Carbon, 1994, vol. 32, no. 8, p. 1523. https://doi.org/10.1016/0008-6223(94)90148-1
  34. Tikhomirov, S. and Kimstach, T., Spectroscopy of Raman scattering is a promising method for the investigation of carbon nanomaterials, Analitika, 2011, no. 1(1), p. 28.
  35. Khabibullina, I.A., Sitnikov, N.N., Kazakov, V.A., and Sigalaev, S.K., Simultaneous thermal analysis and Raman spectroscopy as complementary methods of diagnostics of carbon allotropic forms, Izv. Vyssh. Uchebn. Zaved.: Khim. Khim. Tekhnol., 2016, no. 59(8), p. 34.
  36. Panteleeva, M.V., Description of Raman spectroscopy of light scattering in disordered carbon structure, Obrasov. Nauka Rossii za Rubezhom (in Russian), 2018, no. 42(7), p. 130.
  37. Kim, J.-H., Kim, J.-S., Lim, Y.-G., Lee, J.-G., and Kim, Y.-J., Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors, J. Power Sources, 2011, vol. 196, p. 10490. https://doi.org/10.1016/j.jpowsour.2011.08.081
  38. Yuan, M., Liu, W., Zhu, Y., and Xu, Y., Electrochemical performance of lithium ion capacitors with different types of negative electrodes, Russ. J. Electrochem., 2014, vol. 50, p. 594. .https://doi.org/10.1134/S1023193514020074
  39. Dubasova, V.S., Fialkov, A.S., Kanevsky, L.S., Mikhailova, V.A., Nikolenko, A.F., Ponomareva, T.A., Zaichikov, S.G., Baver, A.I., and Smirnova, T.Yu., Electrochemical characteristics of the negative electrode in lithium-ion batteries: Effect of structure and surface properties of the carbon material, Russ. J. Electrochem., 2004, vol. 40, p. 369. https://doi.org/10.1023/B:RUEL.0000023926.93541.1a