Electrochemical Determination of Tyrosine Using Graphene and Gold Nanoparticle Composite Modified Glassy Carbon Electrode

M. Liu M. Liu , J. Lao J. Lao , H. Wang H. Wang , Z. Xu Z. Xu , J. Li J. Li , L. Wen L. Wen , Z. Yin Z. Yin , C. Luo C. Luo , H. Peng H. Peng
Российский электрохимический журнал
Abstract / Full Text

A electrochemical sensor based on graphene and gold nanoparticles modified glassy carbon electrode (GCE) was developed for the determination of tyrosine (Tyr). The graphene and gold nanoparticles modified glassy carbon electrode (GR/Au NPs/GCE) was prepared by potentiostatic deposition of gold nanoparticles on the grephene coated GCE. Cyclic voltammetry and linear sweep voltammetry were used to study the electrochemical behavior of Tyr on the modified electrode, which showed improved electrocatalytic behavior for oxidation of Tyr due to the significant enhancement of peak current. A linear response between the peak current and the Tyr concentration was detected between 100 nM–100 μM and the detection limit (S/N = 3) was 47 nM. The simple preparation and the good sensitivity make this graphene/gold nanoparticles modified GCE very promising for Tyr analysis in real samples.

Author information
  • Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang Normal University, 421008, Hengyang, PR China

    M. Liu, H. Wang, Z. Xu, J. Li, L. Wen & Z. Yin

  • Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, 421008, Hengyang, PR China

    M. Liu, H. Wang, Z. Xu, J. Li, L. Wen & Z. Yin

  • Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, 200241, Shanghai, China

    J. Lao, C. Luo & H. Peng

  • Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China

    H. Peng

  1. Liang, H.J., Ling, T.R., Rick, J.F., and Chou, T.C., Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine, Anal. Chim. Acta, 2005, vol. 542, no. 1, p. 83.
  2. Jin, G.P. and Lin, X.Q., The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine, Electrochem. Commun., 2004, vol. 6, no. 5, p. 454.
  3. Lorrain, B., Dangles, O., Genot, C., and Dufour, C., Chemical modeling of heme-induced lipid oxidation in gastric conditions and inhibition by dietary polyphenols, J. Agric. Food Chem., 2010, vol. 58, no. 1, p. 676.
  4. Vlasova, I.I., Sokolov, A.V., and Arnhold, J., The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase, J. Inorg. Biochem., 2012, vol. 106, no. 1, p. 76.
  5. Vasjari, M., Merkoçi, A., Hart, J.P., and Alegret, S., Amino acid determination using screen-printed electrochemical sensors, Microchim. Acta, 2005, vol. 150, no. 3, p. 233.
  6. Sanchez-Machado, D.I., Chavira-Willys, B., and Lopez-Cervantes, J., High-performance liquid chromatography with fluorescence detection for quantitation of tryptophan and tyrosine in a shrimp waste protein concentrate, J. Chromatogr. B, 2008, vol. 863, no. 1, p. 88.
  7. Ma, Q., Yu, W., Huang, H., and Su, X., Determination of L-tyrosine based on luminescence quenching of Mn-doped ZnSe quantum dots in enzyme catalysis system, J. Fluoresc., 2011, vol. 21, no. 1, p. 125.
  8. Cheng, M.-L., Tsai, B.-C., and Yang, J., Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution, Anal. Chim. Acta, 2011, vol. 708, nos. 1–2, p. 89.
  9. Liu, X., Luo, L., Ding, Y., Kang, Z., and Ye, D., Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode, Bioelectrochemistry, 2012, vol. 86, p. 38.
  10. Labib, M., Sargent, E.H., and Kelley, S.O., Electrochemical methods for the analysis of clinically relevant biomolecules, Chem. Rev., 2016, vol. 116, no. 16, p. 9001.
  11. Ganjali, M.R., Dourandish, Z., Beitollahi, H., Tajik, S., Hajiaghababaei, L., and Larijani, B., Highly sensitive determination of theophylline based on graphene quantum dots modified electrode, Int. J. Electrochem. Sci., 2018, vol. 13, no. 3, p. 2448.
  12. Motaghi, M.M., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: application to real sample analysis, Int. J. Electrochem. Sci., 2016, vol. 11, no. 9, p. 7849.
  13. Tajik, S., Taher, M.A., Beitollahi, H., and Torkzadeh-Mahani, M., Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor, Talanta, 2015, vol. 134, p. 60.
  14. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., Mirjalili, B.-F., and Akbari, A., Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid, Analyst, 2011, vol. 136, no. 9, p. 1965.
  15. Ganjali, M.R., Salimi, H., Tajik, S., Beitollahi, H., Rezapour, M., and Larijani, B., Application of Fe3O4@SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa, Int. J. Electrochem. Sci., 2017, vol. 12, no. 6, p. 5243.
  16. Khalilzadeh, M.A., Tajik, S., Beitollahi, H., and Venditti, R.A., Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor, Ind. Eng. Chem. Res., 2020, vol. 59, no. 10, p. 4219.
  17. Mahmoudi-Moghaddam, H., Tajik, S., and Beitollahi, H., Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of sudan I content in food samples, Food Chem., 2019, vol. 286, p. 191.
  18. Tajik, S., Beitollahi, H., and Biparva, P., Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite, J. Serb. Chem. Soc., 2018, vol. 83, nos. 7–8, p. 863.
  19. Tajik, S., Taher, M.A., Beitollahi, H., Hosseinzadeh, R., and Ranjbar, M., Preparation, characterization and electrochemical application of ZnS/ZnAl2S4 nanocomposite for voltammetric determination of methionine and tryptophan using modified carbon paste electrode, Electroanalysis, 2016, vol. 28, no. 4, p. 656.
  20. Liu, Y., Dong, X., and Chen, P., Biological and chemical sensors based on graphene materials, Chem. Soc. Rev., 2012, vol. 41, no. 6, p. 2283.
  21. Xu, J., Wang, Y., and Hu, S., Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review, Microchim. Acta, 2017, vol. 184, no. 1, p. 1.
  22. Du, Y.-C., Huang, L.-J., Wang, Y.-X., Yang, K., Tang, J.-G., Wang, Y., Cheng, M.-M., Zhang, Y., Kipper, M.J., Belfiore, L.A., and Ranil, W.S., Recent developments in graphene-based polymer composite membranes: preparation, mass transfer mechanism, and applications, J. Appl. Polym. Sci., 2019, vol. 136, no. 28, p. 47761.
  23. Ehsani, A., Heidari, A.A., and Asgari, R., Electrocatalytic oxidation of ethanol on the surface of graphene based nanocomposites: an introduction and review to it in recent studies, Chem. Rec., 2019, vol. 19, no. 11. https://doi.org/10.1002/tcr.201800176
  24. Meng, X., Zhao, S., Zhang, Z., Zhang, R., Li, J., Leng, J., Cao, D., Zhang, G., and Sun, R., Nacre-inspired highly stretchable piezoresistive Cu–Ag nanowires/graphene synergistic conductive network for strain sensor and beyond, J. Mater. Chem. C, 2019, vol. 7, no. 23. https://doi.org/10.1039/c9tc00943d
  25. Li, C., Zhao, J., Yan, X., Gu, Y., Liu, W., Tang, L., Zheng, B., Li, Y., Chen, R., and Zhang, Z., Tremella-like graphene-Au composites used for amperometric determination of dopamine, Analyst, 2015, vol. 140, no. 6, p. 1913.
  26. Pan, D., Gu, Y., Lan, H., Sun, Y., and Gao, H., Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A, Anal. Chim. Acta, 2015, vol. 853, p. 297.
  27. Zhu, S., Zhang, J., Zhao, X.-E., Wang, H., Xu, G., and You, J., Electrochemical behavior and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns, Microchim. Acta, 2014, vol. 181, nos. 3–4, p. 445.
  28. Zheng, M., Gao, F., Wang, Q., Cai, X., Jiang, S., Huang, L., and Gao, F., Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite, Mat. Sci. Eng. C: Mater., 2013, vol. 33, no. 3, p. 1514.
  29. Xu, Q. and Wang, S.F., Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes, Microchim. Acta, 2005, vol. 151, nos. 1–2, p. 47.
  30. Fan, Y., Liu, J.-H., Lu, H.-T., and Zhang, Q., Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film, Microchim.Acta, 2011, vol. 173, nos. 1–2, p. 241.
  31. Tang, X., Liu, Y., Hou, H., and You, T., Electrochemical determination of L-tryptophan, L-tyrosine and L‑cysteine using electrospun carbon nanofibers modified electrode, Talanta, 2010, vol. 80, no. 5, p. 2182.
  32. Deng, K.-Q., Zhou, J.-H., and Li, X.-F., Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine, Colloid Surf. B, 2013, vol. 101, p. 183.
  33. Zhao, G.H., Qi, Y., and Tian, Y., Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode, Electroanalysis, 2006, vol. 18, no. 8, p. 830.
  34. Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., Liu, M., and Wang, D.J.M.A., Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes, Microchim. Acta, 2013, vol. 180, nos. 1–2, p. 49.
  35. Dong, S., Bi, Q., Qiao, C., Sun, Y., Xia, Z., Lu, X., and Liang, Z.J.T., Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites, Talanta, 2017, vol. 173, p. 94.
  36. Lee, W.-C., Noh, H.-B., Hussain, K.K., Min, S.-J., and Shim, Y.-B., Nicotine and tyrosine detection in blood and urine samples using taurine/reactive blue-immobilized conducting polymer composite, Sens. Actuators B: Chem., 2018, vol. 275, p. 284.
  37. Kanchana, P., Navaneethan, M., and Sekar, C., Fabrication of Ce doped hydroxyapatite nanoparticles based non-enzymatic electrochemical sensor for the simultaneous determination of norepinephrine, uric acid and tyrosine, Mater. Sci. Eng. B, 2017, vol. 226, p. 132.