Examples



mdbootstrap.com



 
Статья
2020

On the Size of the Soft X-Ray Radiation Source Based on an X-Pinch


A. P. ArtyomovA. P. Artyomov, S. A. ChaikovskyS. A. Chaikovsky, V. I. OreshkinV. I. Oreshkin, A. V. FeduninA. V. Fedunin, A. G. RousskikhA. G. Rousskikh, N. A. RatakhinN. A. Ratakhin
Российский физический журнал
https://doi.org/10.1007/s11182-020-01966-z
Abstract / Full Text

The advent of X-pinch based compact radiographs has significantly expanded the application field of pulsed radiography for diagnostics of fast processes. The key point here is the spatial resolution which these radiographs can provide. The method for determining the size of the soft x-ray (SXR) source based on diffraction imaging of opaque metallic wires and their comparison with the diffraction pattern calculated for an extended source in a given spectral range is presented in the paper. The X-pinch source sizes have been measured taking into account the sensitometric characteristic of the film and the scanner characteristics. By this method it has been shown that the diameter of the X-pinch radiation source for current rise rates in the range 0.7–1.35 kA/ns varies slightly for the spectral range hv >3 keV.

Author information
  • Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaA. P. Artyomov, S. A. Chaikovsky, V. I. Oreshkin, A. V. Fedunin, A. G. Rousskikh & N. A. Ratakhin
  • Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences, Ekaterinburg, RussiaS. A. Chaikovsky
References
  1. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, et al., Sov. Tech. Phys. Lett., 8, 1060–1063 (1982).
  2. D. A. Hammer, D. H. Kalantar, K. C. Mittal, and N. Qi, Appl. Phys. Lett., 57, 2083–2085 (1990).
  3. S. A. Pikuz, T. A. Shelkovenko, A. R. Mingaleev, et al., Proc. SPIE, 5974, 59740 (1–9) (2005).
  4. A. P. Artyomov, A. V. Fedunin, S. A. Chaikovsky, and N. A. Ratakhin, J. Phys.: Conf. Series, 653, 012144 (1–5) (2015).
  5. A. G. Rousskikh, A. V. Fedyunin, A. P. Artyomov, et al., Curr. Appl. Phys., 19, 704–708 (2019).
  6. E. V. Parkevich, I. N. Tilikin, A. V. Agafonov, et al., JEТP Lett., 103, 357–361 (2016).
  7. A. P. Artyomov, A. S. Zhigalin, I. V. Lavrinovich, et al., Instr. Exp. Tech., 57, No. 4, 461–474 (2014).
  8. R. B. Baksht, A. G. Rousskikh, A. S. Zhigalin, et al., Phys. Plasmas, 22, 103521 (1–6) (2015).
  9. F. N. Beg, R. B. Stephens, H. W. Xu, et al., Appl. Phys. Lett., 89, 101502 (1–3) (2006).
  10. L. E. Aranchuk, A. S. Chuvatin, and J. Larour, Rev. Sci. Instrum., 75, 69–74 (2004).
  11. S. A. Chaikovsky, A. P. Artyomov, N. V. Zharova, et al., Russ. Phys. J., 60, No. 8, 1408–1412 (2017).
  12. N. A. Ratakhin, V. F. Fedushchak, A. A. Erfort, et al., Russ. Phys. J., 50, No. 2, 193–198 (2007).
  13. S. A. Pikuz, T. Shelkovenko, and D. A. Hammer, Plasma Phys. Rep., 41, No. 4, 291–342 (2015).
  14. E. I. Butikov, Optics [in Russian], Lan’, Saint Petersburg (2012).
  15. A. N. Matveev, Optics [in Russian], Vysshaya Shkola, Moscow (1985).
  16. M. Born and E. Wolf, Principles of Optics [Russian translation], Nauka, Moscow (1973).
  17. E. Hech, Optics, Addison-Wesley, San Francisco (2002).
  18. J. M. Cowley, Diffraction Physics, North-Holland, Amsterdam (1975).
  19. V. Kohn, I. Snigireva, and A. Snigirev, Phys. Rev. Lett., 85, 2745–2748 (2000).
  20. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables, 54, 181–342 (1993).
  21. M. A. Blokhin, Physics of X-Rays [in Russian], State Publishing House of Technical and Theoretical Literature, Moscow (1953).
  22. P. Choi, C. Dumitrescu, E. Wyndham, et al., Rev. Sci. Instrum., 73, No. 6, 2276–2281 (2002).
  23. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, Appl. Opt., 44, 2349–2358 (2005).