Examples



mdbootstrap.com



 
Статья
2022

State of the Helium Atom Inside a Fullerene


V. A. PoteryaevaV. A. Poteryaeva, M. A. BubenchikovM. A. Bubenchikov, A. M. BubenchikovA. M. Bubenchikov, A. I. PotekaevA. I. Potekaev, D. S. KaparulinD. S. Kaparulin
Российский физический журнал
https://doi.org/10.1007/s11182-022-02619-z
Abstract / Full Text

The problem of motion of the helium atom inside the fullerene molecule at ultralow temperatures is considered. The solution of the Schrödinger equation is obtained by numerical methods using special functions. The potential energy of interaction of the fullerene particle with the helium atom is calculated by integrating the modified Lennard–Jones potential over the idealized surface of the hollow nanoparticle. As a result of calculations, zones of the most probable localization of the atomic particle in the states with (n, m, and kn) inside the C60 fullerene were determined and visualized.

Author information
  • National Research Tomsk State University, Tomsk, RussiaV. A. Poteryaeva, M. A. Bubenchikov, A. M. Bubenchikov, A. I. Potekaev & D. S. Kaparulin
References
  1. V. A. Poteryaeva, M. A. Bubenchikov, A. M. Bubenchikov, et al., Sci. Rep., 10, 15631 (2020); DOI: https://doi.org/10.1038/s41598-020-72327-6.
  2. V. A. Poteryaeva, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 65, 114–123 (2020); DOI: https://doi.org/10.17223/19988621/65/9.
  3. A. M. Bubenchikov, M. A. Bubenchikov, A. V. Lun-Fu, and V. A. Ovchinnikov, Fuller., Nanotub. Carbon Nanostructures, 29, No 6, 442−445 (2021); DOI: https://doi.org/10.1080/1536383X.2020.1856817.
  4. R.-F. Peng, S.-J. Chu, Y.-M. Huang, et al., J. Mat. Chem., 19 (22), 3602 (2009); DOI: https://doi.org/10.1039/b904234b.
  5. Y. Rubin, T. Jarrosson, G.-W. Wang, et al., Angew. Chem. Int. Ed., 113 (8), 1591–1594; DOI: 10.1002/1521-3757 (20010417) 113:8 <1591:: aid-ange1591> 3.0.co; 2-v.
  6. X. Dai, Y. Meng, M. Xin, et al., Procedia Chem., 7, 528−533 (2012); DOI: https://doi.org/10.1016/j.proche.2012.10.080.
  7. L. Pang and F. Brisse, J. Phys. Chem., 97, No. 33, 8562–8563 (1993); DOI: https://doi.org/10.1021/j100135a005.
  8. Y. Morinaka, S. Sato, A. Wakamiya, et al., Nat. Commun., 4, No. 1554 (2013); DOI: https://doi.org/10.1038/ncomms2574.
  9. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, eds., Science of Fullerenes and Carbon Nanotubes, Academic Press (1996), pp. 870–917; DOI: https://doi.org/10.1016/B978-012221820-0/50020-4.
  10. S. Mamone, J. Y.-C. Chen, R. Bhattacharyya, et al., Coord. Chem. Rev., 255, Nos. 7–8, 938–948 (2011); DOI: https://doi.org/10.1016/j.ccr.2010.12.029.
  11. A. J. Horsewill, K. S. Panesar, S. Rols, et al., Phys. Rev. B, 85, No. 20 (2012); DOI: https://doi.org/10.1103/physrevb.85.205440.
  12. A. J. Horsewill, K. Goh, S. Rols , et al., Philos. Trans. A, 5, 371 (1998); DOI: https://doi.org/10.1098/rsta.2011.0627.
  13. C. Beduz, M. Carravetta, J. Y.-C. Chen, et al., Proc. Nat. Acad. Sci., 109, No. 32, 12894–12898 (2012); DOI: https://doi.org/10.1073/pnas.1210790109.
  14. Q. Zhao, F. Zhang, and H. Zhou, Sci. China Phys. Mech., 51, No. 7, 765–772 (2008); DOI: https://doi.org/10.1007/s11433-008-0077-7.
  15. O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Adv. Quant. Chem., 58, 69–114 (2009); DOI: https://doi.org/10.1016/s0065-3276 (09 00707-2.
  16. R. Santamaria, J. Soullard, and R. G. Barrera, J. Low Temp. Phys., Pub. Date 2019–01–01; DOI: https://doi.org/10.1007/s10909-018-02134-x.
  17. M. A. Bubenchikov, A. M. Bubenchikov, A. V. Lun-Fu, and V. A. Ovchinnikov, Phys. Status Solidi A, 218, No. 2000174 (2021); DOI: https://doi.org/10.1002/pssa.202000174.
  18. V. A. Poteryaeva, M. A. Bubenchikov, S. Jambaa, et al., J. Phys.: Conf. Ser., 1537, No. 012008 (2019); DOI: https://doi.org/10.1088/1742-6596/1537/1/012008.
  19. V. A. Poteryaeva and M. А. Jingles, Rus.. Phys. J., 64, No. 5, 844–849 (2021).
  20. V. A. Poteryaeva, M. A. Bubenchikov, and A. Lun-Fu, AIP Conf. Proc., 2212, No. 020048 (2020); DOI: https://doi.org/10.1063/5.0000939.
  21. A. Potekaev, L. Shamanaeva, and V. Kalugina, Atmosphere, 12, No. 4, 421 (2021); DOI: https://doi.org/10.3390/atmos12040421.
  22. D. I. Blokhintsev, Fundamentals of Quantum Mechanics [in Russian], Vysshaya Shkola, Moscow (1961).
  23. Z. Sommerfeld, Atomic Structure and Spectra, Vol. 2, State Publishing House of Technical and Theoretical Literature, Moscow (1956).
  24. F. Uhlík, Z. Slanina, and E. Obarsawa, Fullerene Sci. Technol., 8, Nos. 4–5, 453–460 (2000); DOI: https://doi.org/10.1080/10641220009351425.
  25. G. Baitmen and A. Erdeyi, Higher Transcendental Functions, Vol. 1, Nauka, Moscow (1973).
  26. O. V. Usenko, Interaction of molecules and atoms of gas components with carbon structures, Author’s Abstract Cand. Phys.-Math. Sci. Dissert., Tomsk State University, Tomsk (2017).