Статья
2022

Codeposition of Zinc with Manganese from Different Gluconate Baths


 Karolina Chat-Wilk Karolina Chat-Wilk , Ewa Rudnik Ewa Rudnik , Grzegorz Włoch Grzegorz Włoch , Piotr Osuch Piotr Osuch
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522030053
Abstract / Full Text

Codeposition of zinc and manganese from slightly acidic gluconate solutions with various anions (chloride and/or sulfate) showed that independently on the bath speciation manganese ions were a key factor inhibiting electroreduction of zinc ions. It resulted in two potential ranges of the electrodeposition behavior. Morphology and composition of the electrodeposits was not affected by the type of anions in the electrolyte, but was seriously dependent on a deposition potential. Nucleation mode, surface wettability and corrosion properties of the deposits were also discussed.

Author information
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, 30-059, Cracow, Poland

    Karolina Chat-Wilk, Ewa Rudnik, Grzegorz Włoch & Piotr Osuch

References
  1. Boshkov, N., Galvanic Zn–Mn alloys—electrodeposition, phase composition, corrosion behaviour and protective ability, Surf. Coat Technol., 2003, vol. 172, no. 11, p. 217.
  2. Boshkov, N., Petrov, K., Vitkova, S., and Raichevski, G., Corrosion behavior and protective ability of multilayer galvanic coatings of Zn and Zn–Mn alloys in sulfate containing medium, Surf. Coat. Technol., 2006, vol. 194, p. 276.
  3. Bučko, M., Rogan, J., Stevanović, S.I., Perić-Grujić, A., and Bajat, J.B., Initial corrosion protection of Zn–Mn alloys electrodeposited from alkaline solution, Corr. Sci., 2011, vol. 53, p. 2861.
  4. Touazi, S., Bučko, M., Makhloufi, L., Legat, A., and Bajat, J.B., The electrochemical behavior of Zn–Mn alloy coating in carbonated concrete solution, Surf. Rev. Lett., 2016, vol. 23, no. 4, p. 1650030.
  5. Ganesan, S., Prabhu, G., and Popov, B. N., Electrodeposition and characterization of Zn–Mn coatings for corrosion protection, Surf. Coat. Technol., 2014, vol. 238, p. 143.
  6. Chatterjee, B., Electrodeposition of zinc alloys, Jahrb. Oberfl. Techn., 2006, vol. 62, p. 76.
  7. Bozzini, B., Accardi, V., Cavallotti, P.L., and Pavan, F., Electrodeposition and plastic behavior of low-manganese zinc–manganese alloy coatings for automotive applications, Met. Finish., 1999, vol. 97, no. 5, p. 33.
  8. Bozzini, B., Griskonis, E., Fanigliulio, A., and Sulcius, A., Electrodeposition of Zn–Mn alloys in the presence of thiocarbamide, Surf. Coat. Technol., 2002, vol. 154, p. 294.
  9. Diaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., and Trejo, G., Electrodeposition and characterization of Zn–Mn alloy coatings obtained from a chloride-based acidic bath containing ammonium thiocyanate as an additive, Surf. Coat. Technol., 2009, vol. 203, p. 1167.
  10. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., and Tu, J.P., Electrodeposition, morphology, composition and corrosion performance of Zn–Mn coatings from a deep eutectic solvent, J. Mat. Eng. Perform., 2015, vol. 24, p. 434.
  11. Bučko, M., Rogan, J., Stevanović, S.I., Stanković, S., and Bajat, J.B., The influence of anion type in electrolyte on the properties of electrodeposited Zn–Mn alloy coatings, Surf. Coat. Technol., 2013, vol. 228, p. 221.
  12. Rafiee, A., Raeissi, K., and Golozar, M.A., Characterization and corrosion resistance of Zn–Mn coatings electrodeposited from acidic chloride bath, Trans. Inst. Met. Finish., 2014, vol. 92, no. 2, p. 115.
  13. Tsuchiya, Y., Hashimoto, S., Ishibashi, Y., Urakawa, T., Sagiyama, M., and Fukuda, Y., Structure of electrodeposited Zn–Mn alloy coatings, ISIJ Int., 2000, vol. 40, p. 1024.
  14. Wilcox, D.G. and Petersen, B., Zinc–manganese alloy electrodeposition, Trans. Inst. Met. Finish., 1996, vol. 74, no. 4, p. 115.
  15. Loukil, N. and Feki, M., Zn–Mn electrodeposition: a literature review, J. Electrochem. Soc., 2000, vol. 167, p. 0022503.
  16. Zhang, Q.B. and Hua, Y., Effect of Mn2+ ions on the electrodeposition of zinc from acidic sulphate solutions, Hydrometallurgy, 2009, vol. 99, p. 249.
  17. Savall, C., Reberee, C., Sylla, D., Gadouleau, M., Refait, P., and Creus, J., Morphological and structural characterization of electrodeposited Zn–Mn alloys from acidic chloride bath, Mat. Sci. Eng. A, 2006, vol. 430, p. 165.
  18. Loukil, N. and Feki, M., Zn–Mn alloy coatings from acidic chloride bath: effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization, Appl. Surf. Sci., 2017, vol. 410, p. 574.
  19. Sylla, D., Creus, J., Savall, C., Roggy, O., Gadouleau, M., and Refait, P., Electrodeposition of Zn–Mn alloys on steel from acidic Zn–Mn chloride solutions, Thin Solid Films, 2003, vol. 424, p. 171.
  20. Claudel, F., Stein, N., Allain, N., Tidu, A., Hajczak, N., Lallement, R., and Close, D., Pulse electrodeposition and characterization of Zn–Mn coatings deposited from additive free chloride electrolytes, J. Appl. Electrochem., 2019, vol. 49, no. 4, p. 399.
  21. Bozzini, B., Pavant, E., Bollini, G., and Cavallotti, P.L., Zn–Mn alloy electrodeposition on steel, Trans. Inst. Met. Finish., 1997, vol. 75, no. 7, p. 175.
  22. Danilov, F.I., Gerasimov, V.V., and Sukhomlin, D.A., Pulsed electrodeposition of zinc–manganese alloys, Russ. J. Electrochem., 2001, vol. 37, no 3, p. 308.
  23. Müller, C., Sarret, M., and Andreu, T., Electrodeposition of Zn–Mn alloys at low current densities, J. Electrochem. Soc., 2002, vol. 149, no. 11, p. C600.
  24. Müller, C., Sarret, M., and Andreu, T., Electrodeposition of Zn–Mn alloys using pulse plating, J. Electrochem. Soc., 2003, vol. 150, no. 11, p. C772.
  25. Sylla, D., Savall, C., Gadouleau, M., Reberee, C., Creus, J., and Refait, P., Electrodeposition of Zn–Mn alloys on steel using an alkaline pyrophosphate-based electrolytic bath, Surf. Coat. Technol., 2005, vol. 200, p. 2137.
  26. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., and Lallement, R., Electrodeposition, microstructural characterization and anticorrosive properties of Zn–Mn alloy coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium thiocyanate, Surf. Coat. Technol., 2016, vol. 298, p. 73.
  27. Loukil, N. and Feki, M., Synergistic effect of triton X100 and 3-hydroxybenzaldehyde on Zn–Mn electrodeposition from acidic chloride bath, J. Alloys Compd., 2017, vol. 719, p. 420.
  28. Bučko, M., Lačnijeva, U., and Bajat, J., The influence of substituted aromatic aldehydes on the electrodeposition of Zn–Mn alloy, J. Serb. Chem. Soc., 2013, vol. 78, no. 10, p. 1569.
  29. Rubin, W., de Oliveira, E.M., and Carlos, I.A., Study of the influence of boric-sorbitol complex on Zn–Mn electrodeposition and on the morphology, chemical composition and structure of the deposits, J. Appl. Electrochem., 2012, vol. 42, p. 11.
  30. Wykpis, K., Bierska-Piech, B., and Kubisztal, J., Electrodeposition of Zn–Mn coatings from a sulphate bath in the presence of complexing additives, Surf. Interface Anal., 2014, vol. 46, no. 10-11, p. 740.
  31. Chen, P.-Y. and Hussey, C.L., The electrodeposition of Mn and Zn–Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid, Electrochim. Acta, 2007, vol. 52, p. 1857.
  32. Bučko, M., Rogan, J., Jokić, B., Mitrić, M., Lačnjevac, U., and Bajat, J.B., Electrodeposition of Zn–Mn alloys at high current densities from chloride electrolyte, J. Solid State Electrochem., 2013, vol. 17, p. 1409.
  33. Vinokurov, E.G., Kandyrin, K.L., and Bondar, V.V., Modeling of the solution composition and a study of the electrodeposition of the Cu–Zn alloy, Russ. J. Appl. Chem., 2010, vol. 83, no. 4, p. 659.
  34. Vinokurov, E.G., Prognostication of the composition of a solution for electrodeposition of Sn–Co alloy and determination of its color characteristics, Russ. J. Appl. Chem., 2010, vol. 83, no. 2, p. 258.
  35. Sziráki, L., Kuzmann, E., Lak, G.B., El-Sharif, M., Chisholm, C.U., Stichleutner, S., Havancsák, K., Zih-Perényi, K., Homonnay, Z., and Vértes, A., Study of electrodeposition of amorphous Sn–Ni–Fe ternary alloys from a gluconate based electrolyte, Surf. Coat. Technol., 2012, vol. 211, p. 184.
  36. Rudnik, E., Chat, K., Włoch, G., and Osuch, P., Influence of chloride and sulfate ions on electrodeposition, wettability and corrosion resistance of zinc coatings produced from gluconate solutions, J. Electrochem. Soc., 2019, vol. 166, no. 8, p. D323.
  37. Rudnik, E., Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions. J. Electroanal. Chem., 2015, vol. 741, p. 20.
  38. Lu, J., Dreisinger, D., and Glück, T., Manganese electrodeposition—a literature review, Hydrometallurgy, 2014, vol. 141, p. 105.
  39. Gong, J. and Zangari, G., Electrodeposition and characterization of manganese coatings, J. Electrochem. Soc., 2002, vol. 149, no. 4, p. C209.
  40. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A.-K., Sjöberg, S., and Wanner, H., Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: the Zn2+ + OH, Cl, \({\text{CO}}_{3}^{{2 - }}\), \({\text{SO}}_{4}^{{2 - }}\), and \({\text{PO}}_{4}^{{3 - }}\) systems (IUPAC Technical Report), Pure Appl. Chem., 2013, vol. 85, no. 12, p. 2249.
  41. The UPAC Stability Constants Data Base, Academic Software and UPAC, 1992–2000.
  42. Felmy, A.R., Mason, M.J., and Qafoku, O., Thermodynamic Data Development for Modeling Sr/TRU Separations: Sr-EDTA, Sr-HEDTA and Mn-Gluconate Complexation, Richland: Batelle – Pacific Northwest Division, 2003.
  43. Kochkodan, V., Darwish, N.B., and Hilal, N., The chemistry of boron in water, in Boron Separation Processes, Kabay N., Bryjak M., and Hilal N., Eds., Amsterdam: Elsevier, 2015.
  44. Sposito, G., Chemical Equilibria and Kinetics in Soils, New York: Oxford Univ. Press, 1994.
  45. Bousher, A., Review: unidentate complexes involving borate, J. Coord. Chem., 1995, vol. 34, no. 1, p. 1.
  46. Bodini, M.E., Willis, L.A., Riechel, T.L., and Sa-wyer, D.T., Electrochemical and spectroscopic studies of Mn(II), Mn(III) and Mn(IV) gluconate complexes. 1. Formulas and oxidation–reduction stoichiometry, Inorg. Chem., 1976, vol. 15, no. 7, p. 1538.
  47. Wekesa, M., Uddin, M.J., and Sobhi, H.F., An insight into Mn(II) chemistry: a study of reaction kinetics under alkaline conditions, Int. J. Chem. Res., 2011, vol. 2, no. 4, p. 34.
  48. Prakoso, T., Widodo, A., Indarto, A., Mariyana, R., Arif, A.F., Adhi, T.P., and Soerawidjaja, T.H., Manganese gluconate, a greener and more degradation resistant agent for H2S oxidation using liquid redox sulfur recovery process, Heliyon, 2020, vol. 6, p. e03358.
  49. Rudnik, E., Wojnicki, M., and Włoch, G., Effect of gluconate addition on the electrodeposition of nickel from acidic baths, Surf. Coat. Technol., 2012, vol. 207, p. 375.
  50. Rudnik, E. and Dashbold, N., Effect of Cl and \({\text{SO}}_{4}^{{2 - }}\) ions on electrodeposition of cobalt from acidic gluconate solutions, Russ. J. Electrochem., 2019, vol. 55, no. 12, p. 1305.
  51. Rudnik, E., Effect of anions on the electrodeposition of tin from acidic gluconate baths Ionics, 2013, vol. 19, no. 7, p. 1047.
  52. Greef, R., Peat, R., Peter, L. M., Pletcher, D., and Robinson, J., Instrumental Methods in Electrochemistry, Chichester: Ellis Horwood Ltd., 1985.
  53. Rudnik, E. and Chat, K., Comparative studies of the electroreduction of zinc ions from gluconate solutions, Metall. Found. Eng., 2019, vol. 45, no. 1, p. 19.
  54. Brown, P.L. and Ekberg, C., Hydrolysis of Metal Ions, Weinheim: Wiley-VCH, 2016.
  55. Gong, J., Zana, I., and Zangari, G., Electrochemical synthesis of crystalline and amorphous manganese coatings, J. Mater. Sci. Lett., 2001, vol. 20, p. 1921.
  56. Diaz-Arista, P., Antaño-López, R., Meas, Y., Ortega, R., Chainet, E., Ozil, P., and Trejo, G., EQCM study of the electrodeposition of manganese in the presence of ammonium thiocyanate in chloride-based acidic solution, Electrochim. Acta, 2006, vol. 51, p. 4393.
  57. Rudnik, E. and Włoch, G., The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths, Ionics, 2014, vol. 20, no. 12, p. 1747.
  58. Yan, H., Dawnes, J., Boden, P.J., and Harris, S.J., A model for nanolaminated growth patterns in Zn and Zn–Co electrodeposits, J. Electrochem. Soc., 1996, vol. 143, no. 5, p. 1577.
  59. Sharifker, B.R. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, no. 7, p. 879.
  60. Sluyters-Rehbach, M., Wijenberg, J.H.O.J., Bosco, E., and Sluyters, J.H., The theory of chronoamperometry for the investigation of electrocrystallization, J. Electroanal. Chem., 1987, vol. 236, p. 1.
  61. Boudinar, S., Benbrahim, N., Benfedda, B., Kadri, A., Chainet, E., and Hamadou, L., Electrodeposition of heterogeneous Mn–Bi thin films from a sulfate–nitrate bath: nucleation mechanism and morphology, J. Electrochem. Soc., 2014, vol. 161, no. 5, p. D227.
  62. Rafiee, A., Raeisi, K., and Golozar, M.A., Effect of pH on nucleation mechanism od Zn–Mn coatings electrodeposited at different deposition potential, Surf. Eng., 2015, vol. 31, no. 6, p. 439.
  63. Survila, A., Electrochemistry of Metal Complexes, Weinheim: Wiley-VCH, 2015.
  64. Winand, R., Electrocrystallization—theory and applications, Hydrometallurgy, 1992, vol. 92, nos. 1–3, p. 567.
  65. Vazirinasab, E., Jafari, R., and Momen, G., Application of superhydrophobic coatings as a corrosion barrier: a review, Surf. Coat. Technol., 2018, vol. 341, p. 40.