Examples



mdbootstrap.com



 
Статья
2021

Structure and properties of chitosan salt complexes with ascorbic acid diastereomers


A. B. ShipovskayaA. B. Shipovskaya, O. N. MalinkinaO. N. Malinkina, N. O. GegelN. O. Gegel, I. V. ZudinaI. V. Zudina, T. N. LugovitskayaT. N. Lugovitskaya
Российский химический вестник
https://doi.org/10.1007/s11172-021-3281-5
Abstract / Full Text

The study attests the effect of l- and d-diastereomers of ascorbic acid, which were used to prepare a salt form of chitosan, on the conformational features, structure, properties, supramolecular ordering, and biological activity of chitosan l- and d-ascorbates. The three-dimensional organization and functional characteristics of the diastereomeric salt form of the polymer are shown to be determined primarily by the configuration of the chiral ligand. The presented results open new routes to the design of chitosan-containing materials with controlled stereo-structure and biological functionality.

Author information
  • Saratov State University, 83 ul. Astrakhanskaya, 410012, Saratov, Russian FederationA. B. Shipovskaya, O. N. Malinkina, N. O. Gegel & I. V. Zudina
  • Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002, Ekaterinburg, Russian FederationT. N. Lugovitskaya
References
  1. M. Rinaudo, Prog. Polym. Sci., 2006, 31, 603; DOI: https://doi.org/10.1016/j.progpolymsci.2006.06.001.
  2. R. A. A. Muzzarelli, Carbohydr. Polym., 2011, 83, 1433; DOI: https://doi.org/10.1016/j.carbpol.2010.10.044.
  3. V. P. Varlamov, A. V. Il’ina, B. Ts. Shagdarova, A. P. Lunkov, I. S. Mysyakina, Biochemistry (Engl. Transl.), 2020, 85, 154; DOI: https://doi.org/10.1134/S0006297920140084.
  4. E. O. Zemlyakova, Yu. O. Privar, D. A. Shashura, O. V. Koryakova, A. V. Pestov, Russ. Chem. Bull., 2019, 68, 1264; DOI: https://doi.org/10.1007/s11172-019-2551-y.
  5. N. R. Kildeeva, M. A. Belokon, N. A. Sazhnev, A. E. Chalykh, T. F. Petrova, V. V. Matveev, E. A. Svidchenko, N. M. Surin, Polymers, 2020, 12, 1086; DOI: https://doi.org/10.3390/polym12051086.
  6. J. Singh, P. K. Dutta, J. Polym. Res., 2009, 16, 231; DOI: https://doi.org/10.1007/s10965-008-9221-3.
  7. N. O. Gegel, Y. Yu. Zhuravleva, A. B. Shipovskaya, O. N. Malinkina, I. V. Zudina, Polymers, 2018, 10, 259; DOI: https://doi.org/10.3390/polym10030259.
  8. E. V. Shadrina, O. N. Malinkina, T. G. Khonina, A. B. Shipovskaya, V. I. Fomina, E. Yu. Larchenko, N. A. Popova, I. G. Zyryanova, L. P. Larionov, Russ. Chem. Bull., 2015, 64, 1633; DOI: https://doi.org/10.1007/s11172-015-1053-9.
  9. A. E. Chalykh, T. F. Petrova, V. V. Matveev, V. K. Gerasimov, R. R. Khasbiullin, A. A. Shcherbina, N. A. Abaturova, Russ. Chem. Bull., 2020, 69, 675; DOI: https://doi.org/10.1007/s11172-020-2817-4.
  10. M. Koralewski, K. H. Bodek, K. Marczewska, Polish Chitin Soc., 2006, 11, 29.
  11. A. B. Shipovskaya, V. I. Fomina, O. F. Kazmicheva, G. N. Timofeeva, B. A. Komarov, Polym. Sci., Ser. B (Engl. Transl.), 2007, 49, 288; DOI: https://doi.org/10.1134/S156009040711005X.
  12. A. B. Shipovskaya, O. N. Malinkina, V. I. Fomina, D. A. Rudenko, S. Yu. Shchegolev, Russ. Chem. Bull., 2015, 64, 1172; DOI: https://doi.org/10.1007/s11172-015-0995-2.
  13. S.-M. Xie, L-M. Yuan, J. Sep. Sci., 2018, 6; DOI: https://doi.org/10.1002/jssc.201800656.
  14. D. A. Tsioupi, R. I. Stefan-van-Staden, C. P. Kapnissi-Christodoulou, Electrophoresis, 2013, 34, 178; DOI: https://doi.org/10.1002/elps.201200239.
  15. E. Salehi, P. Daraei, A. A. Shamsabadi, Carbohydr. Polym., 2016, 152, 419; DOI: https://doi.org/10.1016/j.carbpol.2016.07.033.
  16. T.-D. Nguyen, B. U. Peres, R. M. Carvalho, M. J. MacLachlan, Adv. Funct. Mater., 2016, 26, 2875; DOI: https://doi.org/10.1002/adfm.201505032.
  17. C. Liu, C. Dong, S. Liu, Y. Yang, Z. Zhang, Carbohydr. Polym., 2020, 257, 117534; DOI: https://doi.org/10.1016/j.carbpol.2020.117534.
  18. S. Rezgui, A. Amrane, F. Fourcade, A. Assadi, L. Monser, N. Adhoum, Appl. Catal. B: Environ., 2018, 226, 346; DOI: https://doi.org/10.1016/j.apcatb.2017.12.061.
  19. A. El. Kadib, Chem. Sus. Chem., 2015, 8, 217; DOI: https://doi.org/10.1002/cssc.201402718.
  20. M. Liu, L. Zhang, T. Wang, Chem. Rev., 2015, 115, 7304; DOI: https://doi.org/10.1021/cr500671p.
  21. J. Singh, P. K. Dutta, J. Dutta, A. J. Hunt, D. J. Macquarrie, J. H. Clark, Carbohydr. Polym., 2009, 76, 188; DOI: https://doi.org/10.1016/j.carbpol.2008.10.011.
  22. S. A. Lermontov, N. Sipyagina, A. N. Malkova, V. K. Ivanov, Microporous. Mesoporous. Mater., 2017, 237, 127; DOI: https://doi.org/10.1016/j.micromeso.2016.09.018.
  23. A. B. Shipovskaya, V. I. Fomina, D. A. Rudenko, S. Yu. Shchyogolev, Int. J. Polym. Sci., 2013, Article ID 825296, 6 p.; DOI: https://doi.org/10.1155/2013/825296.
  24. A. B. Shipovskaya, V. I. Fomina, O. F. Kazmicheva, D. A. Rudenko, O. N. Malinkina, Polym. Sci., Ser. A. (Engl. Transl.), 2017, 59, 330; DOI: https://doi.org/10.1134/S0965545X17030154.
  25. Y. Wen, H. Chen, Y. Yuan, D. Xu, X. Kang, J. Environ. Manage., 2011, 13, 879; DOI: https://doi.org/10.1039/C0EM00593B.
  26. H. J. Schneider, Chemomechanical Gels—Actuators and Sensors, in Chemoresponsive Materials, Ed. H. J. Schneider, RSC Publishing, Cambridge, 2015, 44.
  27. S. Rossi, M. Marciello, G. Sandri, M. C. Bonferoni, F. Ferrari, C. Caramella, Pharm. Dev. Technol., 2008, 13, 513; DOI: https://doi.org/10.1080/10837450802288865.
  28. H. A. Elshoky, T. A. Salaheldin, M. A. Ali, M. H. Gaber, Int. J. Biol. Macromol., 2018, 115, 358; DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.055.
  29. T. Tsujikawa, O. Kanauchi, A. Andoh, T. Saotome, M. Sasaki, Y. Fujiyama, T. Bamba, Nutrition, 2003, 19, 137; DOI: https://doi.org/10.1016/S0899-9007(02)00958-9.
  30. K. S. Özdemir, V. Gökmen, LWT, 2017, 76, 172; DOI: https://doi.org/10.1016/j.lwt.2016.10.057.
  31. X. Liu, J. Ren, Y. Zhu, W. Han, H. Xuan, L. Ge, Colloids. Surf. A: Physicochem. Eng. Asp., 2016, 502, 102; DOI: https://doi.org/10.1016/j.colsurfa.2016.05.018.
  32. K. Ogawa, K. Nakata, A. Yamamoto, Y. Nitta, Chem. Mater., 1996, 8, 2349; DOI: https://doi.org/10.1021/cm9601751.
  33. O. N. Malinkina, N. O. Gegel, A. B. Shipovskaya, J. Mol. Liq., 2019, 284, 75; DOI: https://doi.org/10.1016/j.molliq.2019.03.164.
  34. A. B. Shipovskaya, S. L. Shmakov, N. O. Gegel, Carbohydr. Polym., 2019, 206, 476; DOI: https://doi.org/10.1016/j.carbpol.2018.11.026.
  35. 137 S. M. Rogacheva, A. S. Zhutov, N. A. Shilova, I. N. Klochkova, S. V. Borisova, Izv. Sarat. Un-ta. Nov. Ser. Ser. Khim. Biol. Ekol, [Buyl. Saratov Univ. (New Ser.), Ser. Chem, Biol, Ecol.], 2020, 20, 137 (in Russian); DOI: https://doi.org/10.18500/1816-9775-2020-20-2-137-145.
  36. N. O. Gegel, I. V. Zudina, O. N. Malinkina, A. B. Shipovskaya, Microbiology (Engl. Transl.), 2018, 87, 732; DOI: https://doi.org/10.1134/S0026365618050105.
  37. T. N. Lugovitskaya, I. V. Zudina, A. B. Shipovskaya, Russ. J. Appl. Chem. (Engl. Transl.), 2020, 93, 80; DOI: https://doi.org/10.1134/S0044461820010090.
  38. Pat. RF 2711920, Byul. Izobret. [Inventor Bull.], 2020, 3 (in Russian).
  39. A. F. Al Zubeidi, O. N. Malinkina, I. V. Zudina, O. Yu. Ksenofontova, N. V. Ostrovsky, Modern Problems of Science and Education. Surgery, 2016 (in Russian); http://www.science-ducation.ru/article/view?id=25942.
  40. M. Ambrosi, P. L. Nostro, E. Fratini, L. Giustini, B. W. Ninham, P. Baglioni, J. Phys. Chem. B, 2009, 113, 1404; DOI: https://doi.org/10.1021/jp8092644.
  41. V. A. Tverdislov, E. V. Malyshko, Symmetry, 2020, 12, 587; DOI: https://doi.org/10.3390/sym12040587.