Examples



mdbootstrap.com



 
Статья
2022

High-Power Q-Switched 1064 nm Output Light with High Polarization Degree and Efficient Depolarization Compensation


Lirong WangLirong Wang, Yan QuYan Qu, Guangxin TangGuangxin Tang, Ling ZhangLing Zhang
Российский физический журнал
https://doi.org/10.1007/s11182-022-02593-6
Abstract / Full Text

A high-power linearly polarized 1064 nm light with high polarization degree was achieved by using a compact straight cavity. We carefully designed the Q-switched diode-side-pumped Nd:YAG laser cavity with two laser modules. By using a linearly polarized generation and compensation system, the maximum linearly polarized output power of 250 W with a repetition rate of 10 kHz and a pulse width of 60 ns was achieved, which is even higher than the totally nonlinearly polarized output power generated without this system. The extinction ratio of the linearly polarized 1064 nm light is greater than 2500:1.

Author information
  • Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, ChinaLirong Wang
  • Beijing Advanced Materials and New Energy Technology Development Center, Beijing, ChinaYan Qu
  • Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, ChinaGuangxin Tang & Ling Zhang
  • Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, ChinaGuangxin Tang
References
  1. K. A. Ghany and M. Newishy, J. Mater. Process. Technol., 168, 438–447 (2005).
  2. G. Huber, C. Krankel, and K. Petermann, J. Opt. Soc. Am. B, 27 (11), B93–B105 (2010).
  3. S. V. Usov and I. V. Minaev, J. Mater. Process. Technol., 149, 541–545 (2004).
  4. S. V. Kayukov, Quant. Electron., 30 (11), 941–948 (2000).
  5. P. P. Rajeev, S. Sengupta, A. Das, et al., Appl. Phys. B, 80 (8), 1015–1019 (2005).
  6. R. Weber, A. Michalowski, V. Onuseit, et al., Phys. Proced. 12(A), 21–30 (2011).
  7. J. Sherman, Appl. Opt., 37 (33), 7789 –7796 (1998).
  8. R. Kandasamy, M. Yamanaka, Y. Izawa, and S. Nakai, Opt. Rev., 7 (2), 149–151 (2000).
  9. Renzhong Hua, Satoshi Wada, Hideo Tashiro, Opt. Commun., 175 (1), 189–200 (2000).
  10. G. Benedetti Michelangeli, E. Penco, G. Giuliani, and E. Palange, Opt. Lett., 11 (6), 360–362 (1986).
  11. S. Z. Kurtev, O. E. Denchev, and S. D. Savov, Appl. Opt., 32 (3), 278–285 (1993).
  12. A. Choubey, S. Mondal, R. Singh, et al., Opt. Commun., 330, 61–70 (2014).
  13. A. Choubey, S. Mondal, R. Singh, et al., Opt. Commun., 330, 61–70 (2014).
  14. X. Y. Jiang,, X. W. Yan, Z. G. Wang, et al., High Power Laser Sci. Eng., 3, e9, 5 pp. (2015).
  15. B. Liu, C. Liu, Y. Wang, et al., IEEE J. Sel. Top. Quant. Electron., 24 (5), 1–7 (2018).
  16. Q. Yao, Y. Dong, Q. Wang, and G. Jin, Appl. Opt., 57 (9), 2245–2249 (2018).
  17. S. Zhang, L. Guo, B. Xiong, et al., Appl. Phys. B, 104, 861–866 (2011).