Examples



mdbootstrap.com



 
Статья
2021

Highly Selective Schiff-Base Fluorescent Probe for Rare Earth Ion Lu3+


Xiaolei LiuXiaolei Liu, Xiaohong PengXiaohong Peng, Fei XuFei Xu, Lina WangLina Wang, Manhong LiuManhong Liu
Российский журнал общей химии
https://doi.org/10.1134/S1070363221060165
Abstract / Full Text

A novel Schiff base fluorescent probe for rare earth ion Lu3+ is reported. Emission intensity of the probe is intrinsically non-fluorescent, which is due to isomerization of the C=N bond in the excited-state proton transfer (ESPT) of phenolic protons of the salicylic amide moiety. In the presence of Lu3+, fluorescence intensifies significantly due to inhibition of the C=N isomerization and ESPT. The Schiff base is characterized by high sensitivity and selectivity towards Lu3+. The fluorescence turn-on mechanism of Lu[L]2 system is proposed.

Author information
  • College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, 266042, Qingdao, ChinaXiaolei Liu, Fei Xu & Lina Wang
  • College of Materials Science and Engineering, Qingdao University of Science and Technology, 266042, Qingdao, ChinaManhong Liu
  • Institute of Environmental Planning, Mimistry of Ecology and Environment, 100012, Beijing, ChinaXiaohong Peng
References
  1. Zhu, X., Gong, A., and Yu, S., Spectrochim. Acta (A), 2008, vol. 69, no. 2, p. 478. https://doi.org/10.1016/j.saa.2007.04.026
  2. Wang, X. and Li, Y., Chemistry (Weinheim an der Bergstrasse, Germany), 2003, vol. 9, p. 5627. https://doi.org/10.1002/chem.200304785
  3. Cai, J. and Sessler, J., Chem. Soc. Rev., 2014, vol. 43. https://doi.org/10.1039/c4cs00115j
  4. Evans, N. and Beer, P., Ang. Chem. Int. Ed., 2014, vol. 53. https://doi.org/10.1002/anie.201309937
  5. Busschaert, N., Caltagirone, C., Van Rossom, W., and Gale, P., Chem. Rev., 2015, vol. 115. https://doi.org/10.1021/acs.chemrev.5b00099
  6. Yuan, L., Lin, W., Zheng, K., and Zhu, S., Account. Chem. Res., 2013, vol. 46. https://doi.org/10.1021/ar300273v
  7. Zhang, J., Xing, B., Song, J., Zhang, F., Nie, C., Jiao, L., Liu, L., and Lv, F., Analyt. Chem., 2013, vol. 86. https://doi.org/10.1021/ac402720g
  8. Gui, S., Huang, Y., Hu, F., Jin, Y., Zhang, G., Yan, L., Zhang, D.-Q., and Zhao, R., Analyt. Chem., 2015, vol. 87. https://doi.org/10.1021/ac504153c
  9. Xia, W.-S., Schmehl, R.H., and Li, C.-J., Tetrahedron, 2000, vol. 56, no. 36, p. 7045. https://doi.org/10.1016/S0040-4020(00)00528-7
  10. Liu, J.-M., Chen, C.-F., Zheng, Q.-Y., and Huang, Z.-T., Tetrahedron Lett., 2004, vol. 45, no. 31, p. 6071. https://doi.org/10.1016/j.tetlet.2004.05.159
  11. Zhang, D., Zang, Z., Zhou, X., Zhou, Y., Tang, X., Wei, R., and Liu, W., Inorg. Chem. Commun., 2009, vol. 12, no. 11, p. 1154. https://doi.org/10.1016/j.in-oche.2009.08.007
  12. Jiménez Sánchez, A., Farfán, N., and Santillan, R., J. Phys. Chem. C, 2015, vol. 119, p. 13814. https://doi.org/10.1021/acs.jpcc.5b02884
  13. Bazzicalupi, C., Bencini, A., Biagini, S., Faggi, E., Farruggia, G., Andreani, G., Gratteri, P., Prodi, L., Spepi, A., and Valtancoli, B., Dalton Trans, 2010, vol. 39, p. 7080. https://doi.org/10.1039/c0dt00126k
  14. Li, D., Chen, S., Bellomo, E., Tarasov, A., Kaut, C., Rutter, G., and Li, W.-h., Proc. Nat. Acad. Sci. USA, 2011, vol. 108, p. 21063. https://doi.org/10.1073/pnas.1109773109
  15. Salmon, L., Thuery, P., Rivière, E., and Ephritikhine, M., Inorg. Chem., 2006, vol. 45, p. 83. https://doi.org/10.1021/ic0512375
  16. Wang, L., Qin, W., and Liu, W., Analyt. Methods, 2014, vol. 6, no. 4, p. 1167. https://doi.org/10.1039/c3ay41691g
  17. Paul, M., Singh, Y., Dey, A., Saha, S., Anwar, S., and Chattopadhyay, A., Liq. Crystals, 2015, p. 1. https://doi.org/10.1080/02678292.2015.1108467
  18. Zhang, J., Xu, L., and Wong, W.-Y., Coord. Chem. Rev., 2018, vol. 355, p. 180. https://doi.org/10.1016/j.ccr.2017.08.007
  19. Amimoto, K. and Kawato, T., J. Photochem. Photobiol., 2005, vol. 6, no. 4, p. 207. https://doi.org/10.1016/j.jphot-ochemrev.2005.12.002
  20. Dalapati, S., Jana, S., and Guchhait, N., Spectrochim. Acta (A), 2014, vol. 129, p. 499. https://doi.org/10.1016/j.saa.2014.03.090
  21. Yuan, W.F., Sun, L., Tang, H.H., Wen, Y., Jiang, G., Huang, W., Jiang, L., Song, Y., Tian, H., and Zhu, D.B., Adv. Mater., 2005, vol. 17, p. 156. https://doi.org/10.1002/adma.200400953
  22. Yanez, C.O., Andrade, C.D., Yao, S., Luchita, G., Bondar, M.V., and Belfield, K.D., ACS Appl. Mater. Interfaces, 2009, vol. 1, no. 10, p. 2219. https://doi.org/10.1021/am900587u
  23. Staykov, A., Watanabe, M., Ishihara, T., and Yoshizawa, K., J. Phys. Chem. C, 2014, vol. 118, no. 47, p. 27539. https://doi.org/10.1021/jp5081884
  24. Zhang, X., Guo, L., Wu, F.-Y., and Jiang, Y.-B., Org. Lett., 2003, vol. 5, p. 2667. https://doi.org/10.1021/ol034846u
  25. Peng, X., Tang, X., Qin, W., Dou, W., Guo, Y., Zhang, J.-R., Liu, W., and Wang, D., Dalton Trans., 2011, vol. 40, p. 5271. https://doi.org/10.1039/c0dt01590c
  26. Wang, L., Qin, W., Tang, X., Dou, W., and Liu, W., J. Phys. Chem. A, 2011, vol. 115, no. 9, p. 1609. https://doi.org/10.1021/jp110305k
  27. Ganguly, B. and Nath, R., J. Surf. Interfac. Mater., 2013, vol. 1. https://doi.org/10.1166/jsim.2013.1004
  28. Kursunlu, A., RSC Adv., 2015, vol. 5, p. 41025. https://doi.org/10.1039/C5RA03342J
  29. Liu, J.M., Chen, C.F., Zheng, Q.-Y., and Huang, Z.T., Tetrahedron Lett., 2004, vol. 45, no. 31, p. 6071
  30. Cametti, M., Dalla Cort, A., Colapietro, M., Portalone, G., Russo, L., and Rissanen, K., Inorg. Chem., 2007, vol. 46, p. 9057. https://doi.org/10.1021/ic701521s
  31. Othman, A.B., Lee, J.W., Huh, Y.-D., Abidi, R., Kim, J.S., and Vicens, J., Tetrahedron, 2007, vol. 63, no. 44, p. 10793. https://doi.org/10.1016/j.tet.2007.06.120
  32. Cao, X., Wang, Y., Mo, Y., Wu, L., and Mo, W., Rapid Commun. Mass Spectr., 2016, vol. 30, p. 1454. https://doi.org/10.1002/rcm.7579