Статья
2019

Porous LiMn2O4 Nano-Microspheres as Durable High Power Cathode Materials for Lithium Ion Batteries


Xiaoling Cui Xiaoling Cui , Huixia Feng Huixia Feng , Jinliang Liu Jinliang Liu , Fengjuan Tang Fengjuan Tang , Hongliang Li Hongliang Li
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519040037
Abstract / Full Text

Porous LiMn2O4 spheres was easily fabricated with MnCO3 spheres and MnO2 as precursors and characterized in terms of structure and performance as the cathode of a lithium ion battery. The presence of pores with the average size of about 50 nm throughout the whole LiMn2O4 microspheres was confirmed by scanning electron microscope (SEM) and N2 adsorption-desorption measurements. The electrochemical tests show that the synthesized product has smaller electrochemical polarization, faster Li-ion intercalation kinetics and higher electrochemical stability. It exhibits excellent rate capability and cyclic stability: delivering a reversible discharge capacity of 71 mA h g−1 at a 5 C rate and yielding a capacity retention of over 92% at a rate of 0.5 C after 100 cycles. The superior performance of the synthesized product is attributed to its special structure: porous secondary spheres particles consisting of primary single-crystalline nanoparticles. The nanoparticle reduces the path of Li-ion diffusion and increases the reaction sites for lithium insertion/extraction, the pores provide room to buffer the volume changes during charge-discharge and the single crystalline nanoparticle endows the spinel with the best stability. Taking the excellent electrochemical performance and facile synthesis into consideration, the presented porous LiMn2O4 spheres could be a competitive candidate cathode material for high-performance lithium-ion batteries.

Author information
  • State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China

    Xiaoling Cui & Huixia Feng

  • School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China

    Xiaoling Cui & Huixia Feng

  • College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China

    Xiaoling Cui, Huixia Feng, Jinliang Liu, Fengjuan Tang & Hongliang Li

References
  1. Farmann, A. and Sauer, D.U., A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles, J. Power Sources, 2016, vol. 329, p. 123.
  2. Lin, D., Liu, Y., and Cui, Y., Reviving the lithium metal anode for high-energy batteries, Nature Nanotech., 2017, vol. 12, p. 194.
  3. Mao, F.X., Guo, W., and Ma, J.M., Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes, Rsc. Adv., 2015, vol. 5, p. 105248.
  4. Xu, G., Liu, J., Zhang, C., Cui, G., and Chen, L., Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, J. Mater. Chem. A, 2015, vol. 3, p. 4092.
  5. Liu, Q.L., Wang, S.P., Tan, H.B., Yang, Z.G., Zeng, J., et al., Preparation and doping mode of doped LiMn2O4 for Li-ion batteries, Energies, 2013, vol. 6, p. 1718.
  6. Li, B., Wang, Y., Rong, H., Wang, Y., Liu, J., Xing, L., Xu, M., and Li, W., A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery, J. Mater. Chem. A, 2013, vol. 1, p. 12954.
  7. Yang, L.D., Xie, J., Cao, G.S., and Zhao, X.B., Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries, Adv. Funct. Mater., 2011, vol. 21, p. 348.
  8. Wang, J.G., Jin, D.D., Liu, H.Y., Zhang, C.B., Zhou, R., Shen, C., Xie, K.Y., and Wei, B.Q., All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life, Nano Energy, 2016, vol. 22, p. 524.
  9. Lee, S., Cho, Y., Song, H.K., Lee, K.T., and Cho, J., Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and highpower lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 2012, vol. 51, p. 8748.
  10. Xiong, L., Xu, Y., Tao, T., and Goodenough, J.B., Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries, J. Power Sources, 2012, vol. 199, p. 214.
  11. Dai, K., Mao, J., Li, Z., Zhai, Y.C., Wang, Z.H., Song, X.Y., Battaglia, V., and Liu, G., Microsized single-crystal spinel LAMO for high-power lithium ion batteries synthesized via polyvinylpyrrolidone combustion method, J. Power Sources, 2014, vol. 248, p. 22.
  12. Jiang, Q.Q., Liu, D.D., Zhang, H., and Wang, S., Plasma-assisted sulfur doping of LiMn2O4 for highperformance lithium-ion batteries, J. Phys. Chem. C, 2015, vol. 119, p. 28776.
  13. Zhao, J., Qu, G., Flake, J.C., et al., Low temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes, Chem. Commun., 2012, vol. 48, p. 8108.
  14. Zhang, C.C., Liu, X.Y., Su, Q.L., Wu, J.H., Huang, T., and Yu, A.S., Enhancing electrochemical performance of LiMn2O4 cathode material at elevated temperature by uniform nanosized TiO2 coating, ACS Sustain. Chem. Eng., 2017, vol. 5, p. 640.
  15. Patel, R.L., Park, J., and Liang, X.H., Ionic and electronic conductivities of atomic layer deposition thin film coated lithium ion battery cathode particles, Rsc. Adv., 2016, vol. 6, p. 98768.
  16. Yang, G.R., Wang, L., Wang, J.N., and Yan, W., Tailoring the morphology of one-dimensional hollow LiMn2O4 nanostructures by single-spinneret electro-spinning, Mater. Lett., 2016, vol. 177, p. 13.
  17. Hung, I.M., Yang, Y.C., Su, H.J., and Zhang, J., Influences of the surfactant on the performance of nano-LiMn2O4 cathode material for lithium-ion battery, Ceram. Int., 2015, vol. 41, p. S779.
  18. Jiang, H., Fu, Y., Hu, Y.J., Yan, C.Y., Zhang, L., Lee, P.S., and Li, C.Z., Hollow LiMn2O4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances, Small, 2014, vol. 10, p. 1096.
  19. Wang, F.X., Xiao, S.Y., Zhu, Y.S., Chang, Z., Hu, C.L., Wu, Y.P., and Holze, R., Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors, J. Power Sources, 2014, vol. 246, p. 19.
  20. Li, J., Zhang, X., Peng, R.F., Huang, Y.J., Guo, L., and Qi, Y.C., LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors, Rsc Adv., 2016, vol. 6, p. 54866.
  21. Li, S., Wei, X.G., Chang, Z.R., Chen, X.N., Yuan, X.Z., and Wang, H.J., Facile fabrication of LiMn2O4 microspheres from multi-shell MnO2 for high-performance lithium-ion batteries, Mater. Lett., 2014, vol. 135, p. 75.
  22. Deng, J.Q., Pan, J., Yao, Q.R., Wang, Z.M., and Zhou, H.Y., Porous core-shell LiMn2O4 microellip-soids as high-performance cathode materials for Li-ion batteries, J. Power Sources, 2015, vol. 278, p. 370.
  23. Guo, D.L., Chang, Z.R., Tang, H.W., Li, B., Xu, X.H., Yuan, X.Z., and Wang, H.J., Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4, Electrochim. Acta, 2014, vol. 123, p. 254.
  24. Zhou, Y.B., Deng, Y.F., Yuan, W.H., and Chen, G.H., Synthesis of spinel LiMn2O4 microspheres with durable high rate capability, Trans. Nonferrous Met. Soc., 2012, vol. 22, p. 2541.
  25. Tang, H., Chang, Z., Zhao, H., Yuan, X.Z., Wang, H.J., and Gao, S.Y., Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode, J. Alloy. Compd., 2013, vol. 566, p. 16.
  26. Ragavendran, K., Chou, H.L., Lu, L., Lai, M.O., Hwang, B.J., Ravi Kumar, R., Gopukumar, S., Emmanuel, B., Vasudevan, D., and Sherwood, D., Crystal habits of LiMn2O4 and their influence on the electrochemical performance, Mater. Sci. Eng. B, 2011, vol. 176, p. 1257.
  27. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., and Van, S.W., Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, vol. 4, p. 366.
  28. Ouyang, C., Shi, S., Wang, Z., Huang, X., and Chen, L., Experimental and theoretical studies on dynamic properties of Li ions in LixMn2O4, Solid State Commun., 2004, vol. 130, p. 501.
  29. Sun, W., Cao, F., Liu, Y., Zhao, X., Liu, X., and Yuan, J., Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries, J. Mater. Chem, 2012, vol. 22, p. 20962.
  30. Goodenough, J.B. and Kim, Y., Challenges for rechargeable Li batteries, Chem. Mater., 2010, vol. 22, p. 587.
  31. Hosono, E., Kudo, T., Honma, I., Matsuda, H., and Zhou, H., Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density, Nano Lett., 2009, vol. 9, p. 1045.
  32. Goodenough, J.B. and Park, K.S., The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 2013, vol. 135, p. 1167.
  33. Ellis, B.L., Lee, K.T., and Nazar, L.F., Positive electrode materials for Li-ion and Li batteries, Chem. Mater, 2010, vol. 22, p. 691.
  34. Striebel, K.A., Sakai, E., and Carins, E.J., Impedance studies of the thin film LiMn2O4/electrolyte interface, J. Electrochem. Soc., 2002, vol. 149, p. A61.
  35. Jin, Y.C. and Duh, J.G., Kinetic study of high voltage spinel cathode material in a wide temperature range for lithium ion battery, J. Electrochem. Soc., 2017, vol. 164, p. A735.