Examples



mdbootstrap.com



 
Статья
2020

The Effect of Hexene-1 in Feedstock on the Yield of Target Products during Thermal Pyrolysis of n-Hexane


V. O. LevinV. O. Levin, K. P. Vasil’evaK. P. Vasil’eva, V. V. PotekhinV. V. Potekhin
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220050109
Abstract / Full Text

The effect of the α-olefin addition in the pyrolysis feedstock on the yield of ethylene, propylene, and divinyl (butadiene-1,3) was studied using the n-hexane–hexene-1 model system under conditions of a laboratory flow-type thermal pyrolysis setup. It was found that the total yield of unsaturated hydrocarbons C2=–C4= depends on the ratio of n-hexane : hexene-1 in the initial mixture and is characterized by a maximum value at a 0.36 molar fraction of hexene-1 in feedstock. The main directions of reactions in the presence of an α-olefin are discussed.

Author information
  • St. Petersburg State Institute of Technology, 190013, St. Petersburg, RussiaV. O. Levin, K. P. Vasil’eva & V. V. Potekhin
References
  1. Amghizar, I., Laurien, A.V., Van Geem, K.M., and Marin, G.B., Engineering, 2017, vol. 3, no. 2, pp. 171–178. https://doi.org/10.1016/J.ENG.2017.02.006
  2. Levin, V.O., Potekhin, V.M., and Kudimova M.V., Neftepererab. Neftekhimiya, 2017, no. 6, pp. 28–36.
  3. US Patent 3529032 (Publ. 1970). Cracking of Olefins.
  4. CN Patent 103788989 (Publ. 2014). Steam Cracking Method.
  5. CN Patent 103588608 (Publ. 2014). Butadiene Preparation Method.
  6. DE Patent 1233846 (Publ. 1967). Aprocess for the Thermal Cracking of Olefins.
  7. CN Patent 103788989 (Publ. 2012). A Kind of Steam Cracking Method.
  8. Shevelkova, L.V., Guselnikov, L.E., Bach, G., and Zimmermann, G., Russ. Chem. Rev., 1992, vol. 61, no. 4, pp. 433–445. https://doi.org/10.1070/RC1992v061n04ABEH000955
  9. Magaril, E.R. and Magaril, R.Z., Izv. Vuzov. Neft’ Gaz, 2018, no. 3, pp. 131–137. https://doi.org/10.31660/0445-0108-2018-3-131-137
  10. Yampol’skii, Yu.P., Elementarnye reaktsii i mekhanizm piroliza uglevodorodov (Elementary Reactions and the Mechanism of Hydrocarbon Pyrolysis), Moscow: Khimiya, 1990.
  11. Magaril, R.Z., Mekhanizm i kinetika gomogennykh termicheskikh prevrashchenii uglevodorodov (The Mechanism and Kinetics of Homogeneous Thermal Transformations of Hydrocarbons), Moscow: Khimiya, 1970.
  12. Levin, V.O., Potekhin, V.V., Potekhin, V.M., Kholodnov, V.A., Meshkov, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 11, pp. 1537–1548. https://doi.org/10.1134/S1070427219110119
  13. Litvintsev, I.Yu. , Chem. J., 2006, no. 5, pp. 42–46.
  14. Yang, F., Fuquan, D., Peng, Z., Erjiang, H., Yu, C., Zuohua, H., Energy & Fuels, 2016, vol. 30, no. 6, pp. 5130–5137. https://doi.org/10.1021/acs.energyfuels.5b02910