Examples



mdbootstrap.com



 
Статья
2022

Mechanism of Steel Corrosion in Inhibited Acid Solutions Containing Iron(III) Salts


Ya. G. AvdeevYa. G. Avdeev, T. E. AndreevaT. E. Andreeva
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422020030
Abstract / Full Text

Corrosion of low-carbon steel St3 in 2 M H2SO4 containing Fe2(SO4)3 was studied by measuring mass loss of the metal samples and using voltammetric measurements on a rotating disk electrode. Corrosion of steel in this medium involves anodic ionization of steel proceeding in the kinetic region and two cathodic partial reactions: hydrogen evolution and reduction of Fe(III) to Fe(II) cations characterized by kinetic and diffusion control, respectively. The potentiometric data measured on a platinum electrode in 2 M H2SO4 containing Fe2(SO4)3 and FeSO4 made it possible to establish that Fe(III) cations are bound in complexes with sulfate anions in these media. The oxidizing ability of a corrosive medium, characterized by the Fe(III)/Fe(II) redox pair potential, depends on the Fe(III) content in it and is well described by the Nernst equation. The diffusion coefficients of Fe(III) cations were determined by cyclic voltammetry on a platinum electrode in 2 M H2SO4 in the presence of Fe(III) and by evaluating the response of the cathodic current of a steel electrode to the convective factor in the same medium. The apparent diffusion coefficient of Fe(III) cations measured on a steel electrode in inhibited media may be significantly lower than that in uninhibited media because the penetration of Fe(III) cation through the protective layer of inhibitor to the metal surface is hindered. The weak inhibition of corrosion of low-carbon steel in H2SO4 solutions containing Fe2(SO4)3 by the composite inhibitors under study is the result of the accelerating action of Fe(III) cations on three partial electrode reactions on the metal surface: reduction of Fe(III) and H+ characterized by diffusion and kinetic control and anodic ionization of iron.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, RussiaYa. G. Avdeev & T. E. Andreeva
References
  1. H. Kaesche, Die Korrosion der Metalle. Physikalisch-chemische Prinzipien und aktuelle Probleme (Springer, Berlin, 1979).
  2. L. I. Antropov, Theoretical Electrochemistry (Vyssh. Shkola, Moscow, 1965), p. 348 [in Russian].
  3. J. O’M. Bockris, D. Drazic, and A. R. Despic, Electrochim. Acta 4, 325 (1961). https://doi.org/10.1016/0013-4686(61)80026-1
  4. G. M. Florianovich, L. A. Sokolova, and Ya. M. Kolotyrkin, Electrochim. Acta 12, 879 (1967). https://doi.org/10.1016/0013-4686(67)80124-5
  5. R. J. Chin and K. Nobe, J. Electrochem. Soc. 119, 1457 (1972). https://doi.org/10.1149/1.2404023
  6. Ya. G. Avdeev and T. E. Andreeva, Russ. J. Phys. Chem. A 95, 1128 (2021). https://doi.org/10.1134/S0036024421060029
  7. S. A. Umoren and M. M. Solomon, J. Ind. Eng. Chem. 21, 81 (2015). https://doi.org/10.1016/j.jiec.2014.09.033
  8. V. A. Zakharov, O. A. Songina, and G. B. Bekturova, Zh. Anal. Khim. 31, 2212 (1976).
  9. Ya. G. Avdeev, T. E. Andreeva, A. V. Panova, and E. N. Yurasova, Int. J. Corros. Scale Inhib. 8, 411 (2019). https://doi.org/10.17675/2305-6894-2019-8-2-18
  10. B. Belqat, A. Laghzizil, K. Elkacimi, et al., J. Fluorine Chem. 105, 1 (2000). https://doi.org/10.1016/S0022-1139(00)00256-6
  11. M. M. Rakhimova, T. M. Nurmatov, N. Z. Yusupov, M. A. Ismailova, and E. Faizullaev, Russ. J. Inorg. Chem. 58, 719 (2013).
  12. M. M. Rakhimova, N. Z. Yusupov, K. Dzh. Suyarov, K. G. Khasanova, and Sh. Bekbudova, Russ. J. Inorg. Chem. 58, 972 (2013).
  13. Techniques of Electrochemistry: Electrode Processes, Ed. by E. Yeager and A. J. Salkind (Wiley, New York, 1972), Vol. 1.
  14. Yu. Yu. Lur’e, Handbook on Analytical Chemistry (Khimiya, Moscow, 1971) [in Russian].
  15. J. M. Casas, G. Crisostomo, and L. Cifuentes, Hydrometallurgy 80, 254 (2005).
  16. G. Yue, L. Zhao, O. G. Olvera, and E. Asselin, Hydrometallurgy 147–148, 196 (2014).
  17. J. A. Plambeck, Electroanalytical Chemistry: Basic Principles and Applications (Wiley, New York, 1982).
  18. S. M. Reshetnikov, Inhibitors of Acidic Corrosion of Metals (Khimiya, Leningrad, 1986) [in Russian].
  19. Yu. V. Pleskov and V. Yu. Filinovskii, The Rotating Disk Electrode (Consultants Bureau, New York, 1976).
  20. Short Reference Book of Physicochemical Values, Ed. by K. P. Mishchenko and A. A. Ravdel’ (Khimiya, Leningrad, 1967), p. 103 [in Russian].
  21. A. N. Frumkin and E. A. Aikazyan, Dokl. Akad. Nauk 100, 315 (1955).
  22. A. N. Frumkin and G. A. Tedoradze, Dokl. Akad. Nauk 118, 530 (1958).
  23. I. L. Rozenfel’d, Corrosion Inhibitors (Khimiya, Moscow, 1977) [in Russian].
  24. L. I. Antropov and I. S. Pogrebova, Itogi Nauki Tekh., Ser. Korroz. Zashch. Korroz. 2, 27 (1973).