Examples



mdbootstrap.com



 
Статья
2021

Synthesis and dynamic mechanical properties of cross-linked multiblock poly(urethane-imide) copolymers


A. L. DidenkoA. L. Didenko, A. G. IvanovA. G. Ivanov, E. A. BogdanovaE. A. Bogdanova, V. E. SmirnovaV. E. Smirnova, G. V. VaganovG. V. Vaganov, E. N. PopovaE. N. Popova, D. A. KuznetsovD. A. Kuznetsov, I. A. KobykhnoI. A. Kobykhno, E. S. VasiliyevaE. S. Vasiliyeva, O. V. TolochkoO. V. Tolochko, V. M. SvetlichniyV. M. Svetlichniy, V. E. YudinV. E. Yudin, V. V. KudryavtsevV. V. Kudryavtsev
Российский химический вестник
https://doi.org/10.1007/s11172-021-3279-z
Abstract / Full Text

Poly(urethane-imide) copolymers (PUICs) containing reactive carboxyl groups in hard imide segment were synthesized from poly(propylene glycol) with isocyanate end groups, 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride, aromatic diamines 4,4-bis(4-aminophenoxy)diphenyl sulfone or 4,4-bis-(4-aminophenoxy)biphenyl, and 3,5-diaminobenzoic acid. The PUICs were covalently cross-linked using reactions of carboxyl groups with aromatic diisocyanates and 1,2,5,6-diepoxycyclooctane. The polymers obtained were studied by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. It was shown that the structure of the cross-linking agents influences the properties of cross-linked PUICs. Changes in the mechanical loss factor (tg δ) were analyzed vs. chemical structure of the PUICs. The maximum tg δ values of the copolymers studied are in the range of 0.3–0.4, which suggests good damping capacity of these systems.

Author information
  • Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy prosp., 199004, St. Petersburg, Russian FederationA. L. Didenko, A. G. Ivanov, V. E. Smirnova, G. V. Vaganov, E. N. Popova, D. A. Kuznetsov, V. M. Svetlichniy, V. E. Yudin & V. V. Kudryavtsev
  • Peter The Great St. Petersburg Polytechnic University, 29 Politekhnicheskaya ul., 195251, St. Petersburg, Russian FederationE. A. Bogdanova, I. A. Kobykhno, E. S. Vasiliyeva & O. V. Tolochko
References
  1. X. Sang, R. Wang, X. Chen, L. Zhang, M. An, Y. Shen, Advanced Materials Research, 2011, 284–286, 1746; DOI: https://doi.org/10.4028/www.scientific.net/AMR.284-286.1746.
  2. M. A. Gorbunova, D. V. Anokhin, V. Yu. Zaitsev, A. A. Grischuk, E. R. Badamshina, Russ. Chem. Bull., 2020, 69, 1740.
  3. T. Ueda, T. Nishio, S. Inoue, Open J. Organic Polymer Materials, 2017, 7, 47; DOI: https://doi.org/10.4236/ojopm.2017.74004.
  4. T. Ueda, S. Inoue, Open J. Organic Polymer Materials, 2018, 8, 1; DOI: https://doi.org/10.4236/ojopm.2018.81001.
  5. T. Ueda, S. O. Inoue, Open J. Polymer Chemistry, 2018, 8, 11; DOI: https://doi.org/10.4236/ojpchem.2018.81002.
  6. A. L. Didenko, D. A. Kuznetsov, G. V. Vaganov, V. E. Smirnova, E. N. Popova, A. G. Ivanov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, Vysokomolekulyar. soedineniya, Ser. C, 2020, 62, 86 [Polymer Sci. Ser. C (Engl. Transl.), 2020, 62, 90; DOI: https://doi.org/10.1134/s1811238220020046].
  7. A. Didenko, D. Kuznetsov, G. Vaganov, V. Smirnova, E. Popova, A. Ivanov, B. Chernitsa, V. Svetlichnyi, V. Yudin, V. Kudryavtsev, Key Engineering Materials, 2020, 869, 280; DOI: https://doi.org/10.4028/ww.scientific.net/KEM.869.280.
  8. X. Solimando, J. Babin, C. Arnal-Herault, M. Wang, D. Barth, D. Roizard, J.-R. Doillon-Halmenschlager, M. Poncot, Is. Royaud, P. Alcouffe, L. David, A. Jonquires, Polymer, 2017, 131, 56; DOI: https://doi.org/10.1016/j.polymer.2017.10.007.
  9. Yu-Min Tsai, Tzyy-Lung Yu, Yu-Hsien Tseng, Polymer International, 1998, 47, 445; DOI: https://doi.org/10.1002/(sici)1097-0126(199812)47:4<445::aid-pi82>3.0.co;2-b.
  10. Z. S. Petrović, I. Javni, G. Bánhegy, J. Polym. Sci.: Part B: Polym. Phys., 1998, 36, 237; DOI: https://doi.org/10.1002/(sici)1099-0488(19980130)36:2<237::aid-polb4>3.0.co;2-o.
  11. F. Prochazka, D. Durand, T. Nicolai, J. Rheology, 1999, 43, 1511; DOI: https://doi.org/10.1122/1.551057.
  12. F. Yu, Liwei Cao, Z. Meng, N. Lin, Xi. Yang Liu, Polym. Chem., 2016, 7, 3913; DOI: https://doi.org/10.1039/c6py00350h.
  13. P. K. Behera, P. Mondal, N. K. Singha, Polym. Chem., 2018, 9, 4205; DOI: https://doi.org/10.1039/c8py00549d.
  14. C. P. Buckley, C. Prisacariu, A. Caraculacu, Polymer, 2007, 48, 1388; DOI: https://doi.org/10.1016/j.polymer.2006.12.051.
  15. K. K. Hearon, K. Gall, T. W. D. J. Maitland, J. P. Bearinger, Th. S. Wilson, J. Appl. Polym. Sci., 2011, 121, 144; DOI: https://doi.org/10.1002/app.33428.
  16. X. Yang, L. Wang, W. Wang, H. Chen, G. Yang, S. Zhou, ACS Appl. Mater. Interfaces, 2014, 6, 6545; DOI: https://doi.org/10.1021/am5001344.
  17. N. P. Iyer, T. P. Gnanarajan, G. Radhakrishnan, Macromol. Chem. Phys., 2002, 203, 712.
  18. M. Zuo, T. Takeichi, Polymer, 1999, 40, 5153.
  19. A. Didenko, V. Smirnova, G. Vaganov, E. Popova, V. Elokhovskii, O. Toloshko, E. Vasilyeva, D. Kuznetcov, V. Svetlichnyi, V. Yudin, V. Kudryavtsev, Materials, Methods and Technologies, 2018, 12, 144; https://www.scientificpublications.net/get/1000030/1536243749619408.pdf.
  20. A. L. Didenko, V. E. Smirnova, E. N. Popova, G. V. Vaganov, D. A. Kuznetcov, V. M. Svetlichnyi, O. V. Tolochko, E. S. Vasilyeva, V. E. Yudin, V. V. Kudryavtsev, Russ. Chem. Bull., 2019, 68, 1603; DOI: https://doi.org/10.1007/s11172-019-2599-8.
  21. A. L. Didenko, D. A. Kuznetcov, V. E. Smirnova, E. N. Popova, G. V. Vaganov, A. G. Ivanov, V. E. Yudin, V. M. Svetlichnyi, V. V. Kudryavtsev, Russ. Chem. Bull., 2020, 69, 369; DOI: https://doi.org/10.1007/s11172-020-2769-8.
  22. A. Rasa, Inter. Noise Melbourne, 2014, http://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p426.pdf.
  23. Yu. V. Yurkin, I. A. Mansurova, V. S. Belozerov, A. Zlobina, Materiale Plastice, 2018, 55, Nº 4, 469; https://revmateriale-plastice.ro/pdf/YURKIN%204%2018.pdf.
  24. V. A. Sagamonova, Yu. V. Sytyj, V. I. Kislyakova, S. S. Dolgopolov, Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2014, S3, 5 (in Russian).
  25. I. Kobykhno, A. Didenko, D. Honcharenko, E. Vasilyeva, V. Kudryavtsev, O. Tolochko, Materials Today: Proceedings, 2020, 30, 303; DOI: https://doi.org/10.1016/j.matpr.2019.12.383.
  26. M. M. Rahman, H. D. Kim, W.-Ki Lee, Fibers and Polymers, 2009, 10, 6; DOI: https://doi.org/10.1007/s12221-009-0006-z.
  27. J. M. Thompson, Infrared Spectroscopy, 2018, Pan Stanford Publishing Ltd., 210 pp.
  28. B. Zimmer, C. Nies, C. Schmitt, W. Possart, Polymer, 2017, 115, 77; DOI: https://doi.org/10.1016/j.polymer.2017.03.020.
  29. C. D. Eisenbach, W. Cronski, Macromol. Chem., Rapid Commun., 1983, 4, 707; DOI: https://doi.org/10.1002/marc.1983.030041103.
  30. Ch. Wang, J. Jia, High Performance Polymers, 2014, 26, 240; DOI: https://doi.org/10.1177/09540083135008421.
  31. S. A. Smotrova, Candidate of Science (Techn.) Thesis, Zhukovsky Central Aerohydrodynamic Institute, Zhukovsky, 2005, 152 pp. (in Russian).
  32. V. V. Avdonin, Candidate of Science (Techn.) Thesis, Ogarev Mordovia State University, Saransk, 2015, 123 pp. (in Russian).