Статья
2019

Graphene-Like Carbon Derived from Macadamia Nut Shells for High-Performance Supercapacitor


Xiaowei Lu Xiaowei Lu , Kaixiong Xiang Kaixiong Xiang , Wei Zhou Wei Zhou , Yirong Zhu Yirong Zhu , Yong He Yong He , Han Chen Han Chen
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519020034
Abstract / Full Text

The graphene-like carbon was obtained from macadamia nut shells by an activated hydrothermal method and applied for high-performance supercapacitors. The morphologies and microstructures are investigated by X-ray diffractometer, Raman spectrometer, scanning electron microscopy and transmission electron microscopy. The experimental results show that the obtained carbon exhibits perfect graphene-like structure filled with more micropores and mesopores. The graphene-like carbon displays high surface areas of 1057 m2 g−1. The graphene-like carbon delivers an impressive specific capacitance of 251 F g−1 and has no capacitance loss at the current density of 1 A g−1 after 1000 cycles, which demonstrates the excellent cycle stability and high specific capacitance. The graphene-like carbon derived from macadamia nut shells can be expected for the widespread application of supercapacitors.

Author information
  • School of Metallurgical and Materials Engineering, Hunan University of Technology, Zhuzhou Hunan, 412007, P.R. China

    Xiaowei Lu, Kaixiong Xiang, Wei Zhou, Yirong Zhu, Yong He & Han Chen

References
  1. Simon, P. and Gogotsi, Y., Materials for electrochemical capacitors, Nature Mater., 2008, vol. 7, p. 845.
  2. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P., and Simon, P., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnol., 2010, vol. 5, p. 651.
  3. Liu, C., Yu, Z., Neff, D., Zhamu, A., and Jang, B.Z., Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett., 2010, vol. 10, p. 4863.
  4. Li, M., Yu, H., Lu, X.H., Liu, P., Liang, Y., Xiao, J., Tong, Y.X., and Yang, G.W., Amorphous cobalt hydroxide with superior pseudocapacitive performance, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 745.
  5. Zhai, Y.P., Dou, Y.Q., Zhao, D.Y., Fulvio, P.F., Mayes, R.T., and Dai, S., Carbon materials for chemical capacitive energy storage, Adv. Mater., 2011, vol. 23, p. 4828.
  6. Miller, J.R. and Simon, P., Electrochemical capacitors for energy management, Sci. Mag., 2008, vol. 321, p. 651.
  7. Zhai, Y.P., Dou, Y.Q., Zhao, D.Y., Fulvio, P.F., Mayes, R.T., and Dai, S., Carbon materials for chemical capacitive energy storage, Adv. Mater., 2011, vol. 23, p. 4828.
  8. Xie, K., Qin, X.T., Wang, X.Z., Wang, Y.N., Tao, H.S., Wu, Q., Yang, L.J., and Hu, Z., Carbon nanocages as supercapacitor electrode materials. Advanced materials, Adv. Mater., 2012, vol. 24, p. 347.
  9. Luan, Y.T., Wang, L., Guo, S., Jiang, B.J., Zhao, D.D., Yan, H.J., Tian, C.G., and Fu, H.G., A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors, RSC Adv., 2015, vol. 5, p. 42430.
  10. Zhu, L.H., Gao, Q.M., Tan, Y.L., Tian, W.Q., Xu, J.D., Yang, K., and Yang, C.X., Nitrogen and oxygen co-doped microporous carbons derived from the leaves of Euonymus japonicas as high performance supercapacitor electrode material, Microporous Mesoporous Mater., 2015, vol. 210, p. 1.
  11. Lv, Y.K., Gan, L.H., Liu, M.X., Xiong, W., Xu, Z.J., Zhu, D.Z., and Wright, D.S., A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources, 2012, vol. 209, p. 152.
  12. Emaga, T.H., Bindelle, J., Agneesens, R., Buldgen, A., Wathelet, B., and Paquot, M., Ripening influences banana and plantain peels composition and energy content, Trop. Anim. Health Prod., 2011, vol. 43, p. 171.
  13. Subramanian, V., Luo, C., Stephan, A.M., Nahm, K.S., Thomas, S., and Wei, B.Q., Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C, 2007, vol. 111, p. 7527.
  14. Ruan, C.P., Ai, K.L., and Lu, L.H., Biomass-derived carbon materials for high-performance supercapacitor electrodes, RSC Adv., 2014, vol. 4, p. 30887.
  15. Wu, X.L., Wen, T., Guo, H.L., Yang, S.B., Wang, X.K., and Xu, A.W., Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors, ACS Nano, 2013, vol. 7, p. 3589.
  16. Balathanigaimani, M.S., Shim, W.G., Lee, M.J., Kim, C., Lee, J.W., and Moon, H., Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors, Electrochem. Commun., 2008, vol. 10, p. 868.
  17. Chen, M., Yu, C., Liu, S.H., Fan, X.M., Zhao, C.T., Zhang, X., and Qiu, J.H., Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage, Nanoscale, 2015, vol. 7, p. 1791.
  18. Wang, L., Mu, G., Tian, C.G., Sun, L., Zhou, W., Yu, P., Yin, J., and Fu, H.G., Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors, Chem. Sus. Chem., 2013, vol. 6, p. 880.
  19. Arrebola, J.C., Caballero, A., Hernan, L., Morales, J., Marin, M.O., and Serrano, V.G., Improving the performance of biomass-derived carbons in Li-ion batteries by controlling the Lithium insertion process, J. Electrochem. Soc., 2010, vol. 157, p. A791.
  20. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Poschl, U., Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon, 2005, vol. 43, p. 1731.
  21. Nakagawa, K., Mukai, S.R., Tamura, K., and Tamon, H., Mesoporous activated carbons from phenolic resins, Chem. Eng. Res. Design, 2007, vol. 85, p. 1331.
  22. Su, F.B., Poh, C.K., Chen, J.S., Xu, G.W., Wang, D., Li, Q., Lin, J.Y., and Lou, X.W., Nitrogen-containing microporous carbon nanospheres with improved capacitive properties, Energy Environ. Sci., 2011, vol. 4, p. 717.