Examples



mdbootstrap.com



 
Статья
2021

Analysis of Temperature Gradients in the Hydroxyapatite Ceramics with the Additives of Multi-Walled Carbon Nanotubes


M. S. BarabashkoM. S. Barabashko, M. V. TkachenkoM. V. Tkachenko, A. E. RezvanovaA. E. Rezvanova, A. N. PonomarevA. N. Ponomarev
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421050058
Abstract / Full Text

The temperature difference between the outer surface and the center of a cylindrical sample of hydroxyapatite (HA) ceramics that arise during annealing/sintering were calculated. HA composites containing small amount of multi-walled carbon nanotubes (MWCNTs) were studied by using the X-ray diffraction methods. It is shown that macrostresses are higher in HA ceramic samples without nanotubes than in samples with MWCNTs. Compressive stresses arise on the outer surface of ceramics and tensile stress arise in the central part during the sintering due to the low thermal diffusivity of HA. This leads to the shifts of the X-ray diffraction peaks. The mechanical properties of HA ceramics with MWCNTs are enchanced due to both high mechanical properties of nanotubes and lower temperature gradients in HA ceramics during heating/cooling in the process of sintering. The additives of MWCNTs also lead to an increase in the density of the HA‒MWCNTs composite. The higher thermal diffusivity of MWCNTs, probably, allows to activate the sintering process in ceramics.

Author information
  • B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, Nauky Ave. 47, 61103, Kharkiv, UkraineM. S. Barabashko
  • V.N. Karazin Kharkiv National University, Maidan Svobody 4, 61077, Kharkiv, UkraineM. V. Tkachenko
  • Institute of Strength Physics and Materials Science of SB RAS, 634055, Tomsk, RussiaA. E. Rezvanova & A. N. Ponomarev
References
  1. A. White and M. Best, Int. J. Appl. Ceram. Technol. 4, 1 (2007).
  2. A. Faingold, R. Cohen Shahar, et al., J. Biomech. 47, 367 (2014).
  3. A. S. Zviagin, R. V. Chernozem, M. A. Surmeneva, et al., Eur. Polym. J. 117, 272 (2019).
  4. R. V. Chernozem, M. A. Surmeneva, B. Krause, et al., Appl. Surf. Sci. 426, 229 (2017).
  5. M. B. Sedelnikova, E. G. Komarova, Yu. P. Sharkeev, et al., Metals 8 (4), 1 (2018).
  6. K. A. Prosolov, O. A. Belyavskaya, and J. Linders, Coatings 9 (4), 1 (2019).
  7. Z. Z. Zyman and M. V. Tkachenko, J. Eur. Ceram. Soc. 31, 241 (2011).
  8. S. V. Dorozhkin, J. Funct. Biomater. 1, 22 (2010).
  9. Z. Z. Zyman, M. V. Tkachenko, and D. V. Polevodin, J. Mater. Sci. 19, 2819 (2008).
  10. Ya. E. Geguzin, Physics of Sintering (Nauka, Moscow, 1984) [in Russian].
  11. I. M. Hung, W. J. Shih, et al., Int. J. Mol. Sci. 13, 13569 (2012).
  12. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, Acta Biomater. 9, 7591 (2013).
  13. R. L. Price, M. C. Waid, K. M. Haberstroh, and T. J. Webster, Biomater. 24, 1877 (2003).
  14. L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, Nano Lett. 6, 562 (2006).
  15. I. N. Mazov, I. A. Ilinykh, V. L. Kuznetsov, et al., J. Alloys Compd. 586, 440 (2014).
  16. M. S. Barabashko, M. V. Tkachenko, A. A. Neiman, A. N. Ponomarev, and A. E. Rezvanova, Appl. Nanosci. 10, 2601 (2020). https://doi.org/10.1007/s13204-019-01019-z
  17. T. Kijima and M. Tsutsumi, J. Am. Ceram. Soc. 62, 455 (1979).
  18. W. D. Kingery, J. Am. Ceram. Soc. 38, 3 (1955).
  19. Ya. S. Umansky, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].
  20. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑ray and Electron-Optical Analysis. Appendices (MISIS, Moscow, 1970) [in Russian].
  21. A. A. Rusakov, X-ray Analysis of Metals (Atomizdat, Moscow, 1977) [in Russian].
  22. V. V. Sumarokov, A. Jezowski, D. Szewczyk, et al., Low Temp. Phys. 45, 347 (2019).
  23. M. I. Bagatskii, M. S. Barabashko, V. V. Sumarokov, et al., J. Low Temp. Phys. 187, 113 (2017).
  24. M. I. Bagatskii, V. V. Sumarokov, and M. S. Barabashko, Low Temp. Phys. 42, 94 (2016).
  25. V. V. Sumarokov, M. I. Bagatskii, and M. S. Barabashko, Spr. Proc. Phys. 156, 175 (2015). https://doi.org/10.1007/978-3-319-06611-0_15
  26. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
  27. H. L. Zhang, J. F. Li, B. P. Zhang, et al., Phys. Rev. B 75, 205407 (2007).
  28. B. Kumanek and D. Janas, J. Mater. Sci. 54, 7397 (2019).