Nanoparticle photochemistry via nano-impacts

T. R. Bartlett T. R. Bartlett , S. V. Sokolov S. V. Sokolov , R. G. Compton R. G. Compton
Российский электрохимический журнал
Abstract / Full Text

We report the use of nano-impacts as a novel method for the study of photochemical reactions of individual nanoparticles (NPs). The conversion of gelatine stabilised silver bromide (AgBr) NPs to silver (Ag) NPs through photochemical reduction by ascorbic acid is studied mechanistically. Two mechanisms are proposed and investigated by monitoring the amount of electrochemically accessible AgBr against the time scale of conversion, measured through the use of the nano-impacts technique.

Author information
  • Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK

    T. R. Bartlett, S. V. Sokolov & R. G. Compton

  1. Murphy, M., Ting, K., Zhang, X., Soo, C., and Zheng, Z., Am. J. Nanomater., 2015, vol. 2015, pp. 1–12.
  2. Campbell, F.W. and Compton, R.G., Anal. Bioanal. Chem., 2009, vol. 396, pp. 241–259.
  3. Pacioni, N.L., Borsarelli, C.D., Rey, V., and Veglia, A.V., Synthetic Routes for the Preparation of Silver Nanoparticles, Switzerland: Springer International Publishing, 2015, pp. 13–46.
  4. Murray, C.B., Kagan, C.R., and Bawendi, M.G., Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 545–610.
  5. Hiramatsu, H. and Osterloh, F.E., Chem. Mater., 2004, vol. 16, pp. 2509–2511.
  6. Eastoe, J., Hollamby, M.J., Hudson, L., Adv. Colloid Interface Sci., 2006, vol. 128–130, pp. 5–15.
  7. Isse, A.A., Gottardello, S., Maccato, C., and Gennaro, A., Electrochem. Commun., 2006, vol. 8, pp. 1707–1712.
  8. LaMer, V.K. and Dinegar, R.H., J. Am. Chem. Soc., 1950, vol. 72, pp. 4847–4854.
  9. De Smet, Y., Deriemaeker, L., and Finsy, R., Langmuir, 1997, vol. 13, pp. 6884–6888.
  10. Zhu, H.Y., Lan, Y., Gao, X.P., Ringer, S.P., Zheng, Z.F., Song, D.Y., and Zhao, J.C., J. Am. Chem. Soc., 2005, vol. 127, pp. 6730–6736.
  11. Tang, Z., Wang, Y., Sun, K., and Kotov, N.A., Adv. Mater., 2005, vol. 17, pp. 358–363.
  12. Król-Gracz, A., Michalak, E., Nowak, P.M., and Dyonizy, A., Cent. Eur. J. Chem., 2011, vol. 9, pp. 982–989.
  13. Król-Gracz, A., Nowak, P., Michalak, E., and Dyonizy, A., Acta Phys. Pol. A., 2012, no. 121, p. 196.
  14. Brill, T.B., Light, Its Interaction with Art and Antiquities, N.Y.: Plenum Press, 1980, p. 258.
  15. Zhou, Y.G., Rees, N.V., Compton, R.G., Angew. Chem., Int. Ed. Eng. 2011, vol. 50, pp. 4219–4221.
  16. Xiao, X. and Bard, A.J., J. Am. Chem. Soc., 2007, vol. 129, pp. 9610–9612.
  17. Fernando, A., Parajuli, S., Alpuche-Aviles, M.A., J. Am. Chem. Soc., 2013, vol. 135, pp. 10894–10897.
  18. Ahn, H.S. and Bard, A.J., Angew. Chem., Int. Ed. Eng., 2015, no. 127, p. 13957–13961.
  19. Batchelor-McAuley, C., Ellison, J., Tschulik, K., Hurst, P.L., Boldt, R., and Compton, R.G., Analyst., 2015, vol. 140, pp. 5048–5054.
  20. Bartlett, T.R., Sokolov, S.V., and Compton, R.G., Chem. Open., 2015, vol. 4, pp. 600–605.
  21. Cheng, W., Zhou, X.F., and Compton, R.G., Angew. Chem., Int. Ed. Eng., 2013, vol. 52, pp. 12980–12982.
  22. Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., and Fernig, D.G., Analyst., 2014, no. 139, p. 4855.
  23. Kenchington, A.W., Biochem. J., 1957, vol. 68, pp. 458–468.
  24. Toh, H.S. and Compton, R.G., Chem. Open., 2015, vol. 4, pp. 261–263.