Physico-Chemical and Electrochemical Properties of Lithium Bis(Oxalate)Borate Solutions in Sulfolane

L. V. SheinaL. V. Sheina, A. L. IvanovA. L. Ivanov, E. V. KarasevaE. V. Karaseva, V. S. KolosnitsynV. S. Kolosnitsyn
Российский электрохимический журнал
Abstract / Full Text

The physico-chemical, electrochemical, and thermal properties of lithium bis(oxalate)borate solutions in sulfolane are studied. The sulfolane solutions of lithium bis(oxalate)borate were found to have lower specific ion conductivity and higher viscosity as compared with solutions of lithium perchlorate and lithium hexafluorophosphate. With an increase in the concentration of lithium bis(oxalate)borate solutions in sulfolane, the activation energies for ion conductivity and viscous flow increased. The association constant of lithium bis(oxalate)borate in sulfolane is lower than that of LiClO4 and close to LiPF6. From the dependence of the association constant on the donor number of lithium salts’ anions, the donor number value of the [B(C2O4)] anion was estimated as ~3. The effective transference number of lithium ion in 1 M lithium bis(oxalate)borate solution in sulfolane is 0.46 ± 0.03, which is higher than in 1 M LiClO4 solution (0.39 ± 0.02) and close to 1 M LiBF4 solution (0.42 ± 0.03) in sulfolane. The sulfolane solutions of lithium bis(oxalate)borate are shown to be prone to supercooling and thermodynamically nonequilibrium states formation. The anodic stability boundary of 1 M lithium bis(oxalate)borate solution in sulfolane is as high as 5.65 V vs. Li/Li+ reference electrode. According to the anodic stability, sulfolane solutions of lithium salts are ranked in the following order: LiPF6 ~ LiBF4 > Li bis(oxalate)borate ~ LiClO4 > LiSO3CF3. The cycling life of lithium metal electrode in lithium bis(oxalate)borate sulfolane solution is 1.75 times longer than that in LiClO4 solution; it is determined by the dispersion rate of lithium metal rather than by the electrolyte decomposition rate.

Author information
  • Ufa Federal Research Center, Russian Academy of Sciences, Ufa Institute of Chemistry, Ufa, RussiaL. V. Sheina, A. L. Ivanov, E. V. Karaseva & V. S. Kolosnitsyn
  1. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem. Rev., 2014, vol. 114, p. 11503. https://doi.org/10.1021/cr500003w
  2. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, vol. 104, no. 10, p. 4303. https://doi.org/10.1021/cr030203g
  3. Jow, T.R., Xu, K., Borodin, O., and Ue, M., Electrolytes for Lithium and Lithium-Ion Batteries, in: Modern Aspects of Electrochemistry, New York: Springer Science & Business Media, 2014, vol. 58. https://doi.org/10.1007/978-1-4939-0302-3
  4. Tebbe, J.L., Fuerst, T.F., and Musgrave, C.B., Mechanism of hydrofluoric acid formation in ethylene carbonate electrolytes with fluorine salt additives, J. Power Sources, 2015, vol. 297, p. 427. https://doi.org/10.1016/j.jpowsour.2015.07.104
  5. Handel, P., Fauler, G., Kapper, K., Schmuck, M., Stangl, C., Fischer, R., Uhlig, F., and Koller, S., Thermal aging of electrolytes used in lithium-ion batteries – An investigation of the impact of protic impurities and different housing materials, J. Power Sources, 2014, vol. 267, p. 255. https://doi.org/10.1016/j.jpowsour.2014.05.080
  6. Xu, K., Zhang, S.S., Lee, U., Allen, J.L., and Jow, T.R., LiBOB: Is it an alternative salt for lithium ion chemistry? J. Power Sources, 2005, vol. 146, p. 79. https://doi.org/10.1016/j.jpowsour.2005.03.153
  7. Younesi, R., Veith, G. M., Johansson, P., Edström, K., and Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S (Review), Energy Environ. Sci., 2015, vol. 8, p. 1905. https://doi.org/10.1039/C5EE01215E
  8. Liu, Z., Chai, J., Xu, G., Wang, Q., and Cui, G., Functional lithium borate salts and their potential application in high performance lithium batteries, Coord. Chem. Rev., 2015, vol. 292, p. 56. https://doi.org/10.1016/j.ccr.2015.02.011
  9. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Y.A., New Lithium Salts in Electrolytes for Lithium-Ion Batteries (Review), Russ. J. Electrochem., 2017, vol. 53, p. 677. https://doi.org/10.7868/S0424857017070015
  10. Cui, X., Tang, F., Zhang, Y., Li, C., Zhao, D., Zhou, F., Li, S., and Feng, H., Influences of trace water on electrochemical performances for lithium hexafluoro phosphate- and lithium bis(oxalato)borate-based electrolytes, Electrochim. Acta, 2018, vol. 273, p. 191. https://doi.org/10.1016/j.electacta.2018.03.138
  11. Wang, R., Li, X., Wang, Z., Guo, H., Su, M., and Hou, T., Comparative study of lithium bis(oxalate)borate and lithium bis(fluorosulfonyl)imide on lithium manganese oxide spinel lithium-ion batteries, J. Alloys Compd., 2015, vol. 624, p. 74. https://doi.org/10.1016/j.jallcom.2014.11.098
  12. Haregewoin, A.M., Wotango, A.S., and Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci., 2016, vol. 9, p. 1955. https://doi.org/10.1039/C6EE00123H
  13. Xu, K., Zhang, S., and Jow, T.R., Formation of the Graphite-Electrolyte Interface by Lithium Bisoxalatoborate, Electrochem. Solid-State Lett., 2003, vol. 6, no. 6, p. A117. https://doi.org/10.4028/www.scientific.net/KEM.519.156
  14. Pieczonka, N.P.W., Yang, L., Balogh, M.P., Powell, B.R., Chemelewski, K., Manthiram, A., Krachkovskiy, S.A., Goward, G.R., Liu, M., and Kim, J.-H., Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries, J. Phys. Chem. C, 2013, vol. 117, p. 22603. https://doi.org/10.1021/jp408717x
  15. Chen, F., Wang, B., Wang, F., Jiang, Y., Dong, B., Zhao, H., and Wang, D., Precast solid electrolyte interface film on Li metal anode toward longer cycling life, Ionics, 2020, vol. 26, p. 1711. https://doi.org/10.1007/s11581-019-03356-z
  16. Xu, K., LiBOB as additive in LiPF6-based lithium ion electrolytes, Electrochem. Solid-State Lett., 2005, vol. 8, no. 7, p. A365. https://doi.org/10.1149/1.1924930
  17. Santee, S., Xiao, A., Yang, L., Gnanaraj, J., and Lucht, B.L., Effect of combinations of additives on the performance of lithium ion batteries, J. Power Sources, 2009, vol. 194, p. 1053. https://doi.org/10.1016/j.jpowsour.2009.06.012
  18. Zhang, S.S., An unique lithium salt for the improved electrolyte of Li-ion battery, Electrochem. Commun., 2006, vol. 8, p. 1423. https://doi.org/10.1016/j.elecom.2006.06.016
  19. Flamme, B., Haddad, M., Phansavath, P., Ratovelomanana-Vidal, V., and Chagnes, A., Anodic Stability of New Sulfone-Based Electrolytes for Lithium-Ion Batteries, ChemElectroChem., 2018, vol. 5, p. 2279. https://doi.org/10.1002/celc.201701343
  20. Abouimrane, A., Belharouak, I., and Amine, K., Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochem. Commun., 2009, vol. 11, p. 1073. https://doi.org/10.1016/j.elecom.2009.03.020
  21. Wu, F., Zhou, H., Bai, Y., Wang, H., and Wu, C., Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 27, p. 15098. https://doi.org/10.1021/acsami.5b04477
  22. Shao, N., Sun, X.-G., Dai, S., and Jiang D., Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries, J. Phys. Chem. B, 2011, vol. 115, p. 12120. https://doi.org/10.1021/jp204401t
  23. Li, S., Zhao, W., Xiaoling, C., Zhao, Y., Li, B., Zhang, H., Li, Y., Li, G., Ye, X., and Luo, Y., An improved method for synthesis of lithium difluoro(oxalato) borate and effects of sulfolanee on the electrochemical performances of lithium-ion batteries, Electrochim. Acta, 2013, vol. 91, p. 282. https://doi.org/10.1016/j.electacta.2013.01.011
  24. Wu, F., Xiang, J., Li, L., Chen, J., Tan, G., and Chen, R., Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries, J. Power Sources, 2012, vol. 202, p. 322. https://doi.org/10.1016/j.jpowsour.2011.11.065
  25. Zhang, T., de Meatza, I., Qi, X., and Paillard, E., Enabling steady graphite anode cycling with high voltage, additive-free, sulfolanee-based electrolyte: Role of the binder, J. Power Sources, 2017, vol. 356, p. 97. https://doi.org/10.1016/j.jpowsour.2017.04.073
  26. Wang, Y., Xing, L., Li, W., and Bedrov, D., Why Do Sulfone-Based Electrolytes Show Stability at High Voltages? Insight from Density Functional Theory, J. Phys. Chem. Lett., 2013, vol. 4, p. 3992. https://doi.org/10.1021/jz401726p
  27. Lide, D.R., Handbook of Chemistry and Physics, 85th edition, New York.: CRC Press LLC, 2005.
  28. Xu, K. and Angell, C.A., Sulfone-Based Electrolytes for Lithium-Ion Batteries, J. Chem. Soc., 2002, vol. 149, no. 7, p. A920. https://doi.org/10.1149/1.1483866
  29. Xue, L., Lee, S.-Y., Zhao, Z., and Angell, C.A., Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries, J. Power Sources, 2015, vol. 295, p. 190. https://doi.org/10.1016/j.jpowsour.2015.06.112
  30. Demeaux, J., De Vito, E., Lemordant, D., Le Digabel, M., Galiano, H., Caillon-Caravanier, M., and Claude-Montigny, B., On the limited performances of sulfone electrolytes towards the LiNi0.4Mn1.6O4 spinel, J. Phys. Chem. Chem. Phys., 2013, vol. 15, p. 20900. https://doi.org/10.1039/c3cp53941e
  31. Lee, S.-Y., Ueno, K., and Angell, C.A., Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions, J. Phys. Chem. C, 2012, vol. 116, p. 23915. https://doi.org/10.1021/jp3067519
  32. Lewandowski, A., Kurc, B., Stepniak, I., and Swiderska-Mocek, A., Properties of Li-graphite and LiFePO4 electrodes in LiPF6–sulfolane electrolyte, Electrochim. Acta, 2011, vol. 56, p. 5972. https://doi.org/10.1016/j.electacta.2011.04.105
  33. Li, C., Wang, P., Li, S., Zhao, D., Zhao, Q., Liu, H., and Cui, X.-L., Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complex, ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 30, p. 25744. https://doi.org/10.1021/acsami.8b05125
  34. Wan, S., Jiang, X., Guo, B., Dai, S., Goodenough, J.B., and Sun, X.-G., A stable fluorinated and alkylated lithium malonatoborate salt for lithium ion battery application, Chem. Commun., 2015, vol. 51, p. 9817. https://doi.org/10.1039/C5CC01428J
  35. Wang, S., Qiu, W., Guan, Y., Yu, B., Zhao, H., and Liu, W., Electrochemical characteristics of LiMxFe1 – xPO4 cathode with LiBOB based electrolytes, Electrochim. Acta, 2007, vol. 52, p. 4907. https://doi.org/10.1016/j.electacta.2007.01.052
  36. Swiderska-Mocek, A. and Naparstek, D., Physical and electrochemical properties of lithium bis(oxalate) borate—organic mixed electrolytes in Li-ion batteries, Electrochim. Acta, 2016, vol. 204, p. 69. https://doi.org/10.1016/j.electacta.2016.03.127
  37. Li, S.Y., Cui, X.L., Xu, X.L., Shi, X.M., and Li, G.X., Electrochemical performances of two kinds of ternary electrolyte mixtures with lithium bis(oxalate)borate, Russ. J. Electrochem., 2012, vol. 48, p. 518. https://doi.org/10.1134/S1023193511090126
  38. Xu, W. and Angell, C.A., LiBOB and Its Derivatives. Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions, Electrochem. Solid-State Lett., 2001, vol. 4, no. 1, p. E1. https://doi.org/10.1149/1.1347858
  39. Aihara, Y., Bando, T., Nakagawa, H., Yoshida, H., Hayamizu, K., Akiba, E., and Price, W.S., Ion Transport Properties of Six Lithium Salts Dissolved in γ-Butyrolactone Studied by Self-Diffusion and Ionic Conductivity Measurements, J. Electrochem. Soc., 2004, vol. 151, no. 1, p. A119. https://doi.org/10.1149/1.1630592
  40. Li, S., Li, B., Xu, X., Shi, X., Zhao, Y., Mao, L., and Cui, X., Electrochemical performances of two kinds of electrolytes based on lithium bis(oxalate)borate and sulfolanee for advanced lithium ion batteries, J. Power Sources, 2012, vol. 209, p. 295. https://doi.org/10.1016/j.jpowsour.2012.03.004
  41. Cui, X., Zhang, H., Li, S., Zhao, Y., Mao, L., Zhao, W., Li, Y., and Ye, X., Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and γ-butyrolactone, J. Power Sources, 2013, vol. 240, p. 476. https://doi.org/10.1016/j.jpowsour.2013.04.063
  42. Larsson, W., Panitz, J.-C., and Cedergren, A., Interference-free coulometric titration of water in lithium bis(oxalate)borate using Karl Fischer reagents based on N-methylformamide, Talanta, 2006, vol. 69, p. 276. https://doi.org/10.1016/j.talanta.2005.10.004
  43. Kolosnitsyn, V.S., Sheina, L.V., and Mochalov, S.E., Physicochemical and electrochemical properties of sulfolane solutions of lithium salts, Russ. J. Electrochem., 2008, vol. 44, p. 575. https://doi.org/10.1134/S102319350805011X
  44. Mochalov, S.E., Antipin, A.V., and Kolosnitsyn, V.S., Multichannel test system for secondary chemical current sources and electrochemical cells, Scientific instrumentation, 2009, vol. 19, no. 3, p. 88. http://213.170.69. 26/en/magazine.php.
  45. Evans, J., Vincent, C.A., and Bruce, P.G., Electrochemical measurement of transference number in polymer electrolytes, Polymer., 1987, vol. 28., p. 2324. https://doi.org/10.1016/0032-3861(87)90394-6
  46. Bruce, P.G., Evans, J., and Vincent, C.A., Conductivity and Transference Number Measurements on Polymer Electrolytes, Solid State Ionics, 1988, vols. 28–30, p. 918. https://doi.org/10.1016/0167-2738(88)90304-9
  47. Johansson, P., Electronic structure calculations on lithium battery electrolyte salts, Phys. Chem. Chem. Phys., 2007, vol. 9, p. 1493. https://doi.org/10.1039/B612297C
  48. Linert, W., Camard, A., Armand, M., and Michot, C., Anions of low Lewis basicity for ionic solid state electrolytes, Coord. Chem. Rev., 2002, vol. 226, p. 137.
  49. Ue, M., Murakami, A., and Nakamura, S., A Convenient Method to Estimate Ion Size for Electrolyte Materials Design, J. Electrochem. Soc., 2002, vol. 149, p. A1385. https://doi.org/10.1149/1.1507593
  50. Ue, M., Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ-Butyrolactone, J. Electrochem. Soc., 1994, vol. 141, no. 12, p. 3336. https://doi.org/10.1149/1.2059336
  51. Allen, J.L., Han, S.-D., Boyle, P.D., and Henderson, W.A., Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox), J. Power Sources, 2011, vol. 196, p. 9737. https://doi.org/10.1016/j.jpowsour.2011.07.065
  52. You, L.S., Hua, M.P., Ling, C.X., Du, R.Q., and Qiang, L.F., Studies on the thermal decomposition kinetics of LiPF6 and LiBC4O8, J. Chem. Sci., 2008, vol. 120, no. 2, p. 289.
  53. Alvarado, J., Schroeder, M.A., Zhang, M., Borodin, O., Gobrogge, E., Olguin, M., Ding, M.S., Gobet, M., Greenbaum, S., Meng, Y.S., and Xu, K., A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries, Mater. Today, 2018, vol. 21, no. 4, p. 341. https://doi.org/10.1016/j.mattod.2018.02.005
  54. Borodin, O., Behl, W., and Jow, T.R., Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes, J. Phys. Chem. C, 2013, vol. 117, p. 8661. https://doi.org/10.1021/jp400527c