Статья
2017

Models of lithium transport as applied to determination of diffusion characteristics of intercalation electrodes


A. V. Ivanishchev A. V. Ivanishchev , A. V. Churikov A. V. Churikov , I. A. Ivanishcheva I. A. Ivanishcheva , A. V. Ushakov A. V. Ushakov , M. J. Sneha M. J. Sneha , P. Babbar P. Babbar , A. Dixit A. Dixit
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517070047
Abstract / Full Text

In order to elucidate the mechanism of lithium transport in intercalation electrodes based on solid lithium-accumulating compounds and determine its parameters, the kinetic models are used which allow the combined analysis of electrode impedance spectroscopy, cyclic voltammetry, pulse chronoampero- and chronopotentiometry data to be carried out. The models describe the stages of consecutive lithium transport in the surface layer and bulk of electrode-material particles, including the accumulation of species in the bulk. The lithium transport stages that occur in the surface layer of an intercalation-material particle and in its bulk are both of the diffusion nature but substantially differ as regards their characteristic times and diffusion coefficients D. Taking account of this peculiarity and assessing adequately the geometrical configuration of intercalation system allow the diffusion parameters of lithium transport to be correctly determined.

Author information
  • Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, 143026, Russia

    A. V. Ivanishchev

  • Institute of Chemistry, Chernyshevsky Saratov National Research State University, Saratov, 410012, Russia

    A. V. Ivanishchev, A. V. Churikov, I. A. Ivanishcheva & A. V. Ushakov

  • Department of Physics, Center for Solar Energy, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India

    M. J. Sneha, P. Babbar & A. Dixit

References
  1. Wen, C.J., Boukamp, B.A., Huggins, R.A., and Weppner, W., J. Electrochem. Soc., 1979, vol. 126, p. 2258.
  2. Levi, M.D. and Aurbach, D., Electrochim. Acta, 1999, vol. 45, p. 167.
  3. Markevich, E., Levi, M.D., and Aurbach, D., J. Electroanal. Chem., 2005, vol. 580, p. 231.
  4. Churikov, A.V., Ivanishchev, A.V., Ushakov, A.V., and Romanova, V.O., J. Solid State Electrochem., 2014, vol. 18, p. 1425.
  5. Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Zapsis, K.V., Gamayunova, I.M., and Sycheva, V.O., Russ. J. Electrochem., 2008, vol. 44, p. 530.
  6. Montella, C., J. Electroanal. Chem., 2002, vol. 518, p. 61.
  7. Montella, C., Electrochim. Acta, 2005, vol. 50, p. 3746.
  8. Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Sycheva, V.O., Khasanova, N.R., and Antipov, E.V., Electrochim. Acta, 2010, vol. 55, p. 2939.
  9. Churikov, A.V., Russ. J. Electrochem., 2002, vol. 38, p. 103.
  10. Ivanishchev, A.V., Churikov, A.V., and Ushakov, A.V., Electrochim. Acta, 2014, vol. 122, p. 187.
  11. Levi, M.D., Wang, C., and Aurbach, D., J. Electroanal. Chem., 2004, vol. 561, p. 1.
  12. Levi, M.D. and Aurbach, D., J. Phys. Chem. B, 2004, vol. 108, p. 11693.
  13. Meyers, J.P., Doyle, M., Darling, R.M., and Newman, J., J. Electrochem. Soc., 2000, vol. 147, p. 2930.
  14. Pajkossy, T., J. Electroanal. Chem., 1994, vol. 364, p. 111.
  15. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., Zapsis, K.V., and Gamayunova, I.M., Russ. J. Electrochem., 2008, vol. 44, p. 510.
  16. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., and Ushakov, A.V., Ionics, 2016, vol. 22, p. 483.
  17. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., and Ushakov, A.V., in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Amsterdam Elsevier, 2015. https://dx.doi.org/10.1016/B978-0-12-409547-2.11544-6.