Статья
2018

Studies of Cobalt(III) and Chromium(III) Complexes as Mediators in the Silver Nanoparticle Electrosynthesis in Aqueous Media


V. V. Yanilkin V. V. Yanilkin , R. R. Fazleeva R. R. Fazleeva , N. V. Nastapova N. V. Nastapova , G. R. Nasretdinova G. R. Nasretdinova , A. T. Gubaidullin A. T. Gubaidullin , N. B. Berezin N. B. Berezin , Yu. N. Osin Yu. N. Osin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518080062
Abstract / Full Text

Metal complexes [Cr(bipy)3]3+, [Co(bipy)3]3+, and [Co(sep)]3+ in aqueous media at the potentials of M(III)/M(II) redox couple are shown playing a role of mediators in the electrosynthesis of silver nanoparticles, stabilized in a polyvinylpyrrolidone shell, by means of Ag(I) reduction. [Cr(bipy)3]3+ is consumed under the conditions of long-term preparative electrolysis, the reduction process is accompanied by cathode passivation, therefore, the Ag+ ions complete conversion to the Ag-nanoparticles is unattainable. The two other metal complexes are fully remained unimpaired; the mediated electrosynthesis of the Ag-nanoparticles is carried out well effectively: the Ag-nanoparticles are produced in the solution bulk with a nearly quantitative yield, a theoretical charge being consumed. the [Co(bipy)3]3+-mediated reduction of the Ag+ ions, generated by a silver anode in situ dissolution in the course of single compartment cell electrolysis, is accompanied by the anode metal dispersion and results in the formation of polydisperse Ag-nanoparticles. The summary Ag-nanoparticle current efficiency in the solution bulk comes to 128%. Thus formed Ag-nanoparticles are characterized by using dynamic light scattering, scanning and transmission electron microscopy, and X-ray powder diffraction. The Ag-nanoparticles are spherical, with a mean size of 83 ± 53 nm, or have a form of nanowires, with a length of l = 1216 ± 664 nm and diameter of d = 94 ± 17 nm. The [Co(sep)]3+-mediated AgCl reduction gives ellipsoidal Ag-nanoparticles sized l = 46 ± 19 nm, d = 27 ± 7 nm; the silver crystallite mean size is 20(1)–34.4(9) nm.

Author information
  • FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Tatarstan, 420008, Russia

    V. V. Yanilkin, R. R. Fazleeva, N. V. Nastapova, G. R. Nasretdinova, A. T. Gubaidullin & N. B. Berezin

  • Interdisciplinary Center “Analytical microscopy,”, Kazan (Privolzhskii) Federal University, Kazan, Tatarstan, 420018, Russia

    Yu. N. Osin

References
  1. Pomogaylo, A.D., Rosenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.
  2. Roldughin, V.I., Quantum-Size colloid metal systems, Russ. Chem. Rev., 2000, vol. 69, p.821.
  3. Daniel, M.C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, vol. 104, p.293.
  4. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostructury i nanomaterialy (Nanotechnology, Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials), Moscow: KomKniga, 2006.
  5. Volkov, V.V., Kravchenko, T.A., and Roldughin, V.I., Metal Nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russ. Chem. Rev, 2013, vol. 82, p.465.
  6. Dykman, L.A., Bogatyrev, V.A., Shchyogolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy. Sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles, Synthesis, Properties, and Biomedical Applications), Moscow: Nauka, 2008.
  7. Kharisov, B.I., Kharissova, O.V., and Ortiz-Mendez, U., Handbook of Less-common Nanostructures, CRC Press, Taylor Francis Group, 2012.
  8. Yanilkin, V.V., Nasybullina, G.R., Ziganshina, A.Yu., Nizamiev, I.R., Kadirov, M.K., Korshin, D.E., and Konovalov, A.I. Tetraviologen calix[4]resorcine as a mediator of the electrochemical reduction of [PdCl4]2–for the production of Pd0 nanoparticles, Mendeleev Commun., 2014, vol. 24, p.108.
  9. Yanilkin, V.V., Nasybullina, G.R., Sultanova, E.D., Ziganshina, A.Yu., and Konovalov, A.I., Methyl viologen and tetraviologen calix[4]resorcinol as mediators of the electrochemical reduction of [PdCl4] 2-with formation of finely dispersed Pd0, Russ. Chem. Bull. Int. Ed., 2014, vol. 63, no. 6, p. 1409.
  10. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated electrochemical synthesis of Pd0 nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p.951.
  11. Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd deposition for catalytic application in aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015, vol. 486, p.185.
  12. Yanilkin, V.V., Nastapova, N.V., Sultanova, E.D., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Electrochemical synthesis of nanocomposite of palladium nanoparticles with polymer viologen-containing nanocapsule, Russ. Chem. Bull. Int. Ed., 2016, vol. 65, no. 1, p.125.
  13. Nasretdinova, G.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrosynthesis of palladium nanoparticles stabilized with CTAC, J. Electrochem. Soc., 2016, vol. 163, p. G99.
  14. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 2015, vol. 50, p.69.
  15. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical mediated synthesis of silver nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 1029.
  16. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Y.N., Methylviologen mediated electrochemical reduction of AgCl—a new route to produce a silica core/Ag shell nanocomposite material in solution, Electrochem. Commun., 2015, vol. 59, p.60.
  17. Nasretdinova, G.R., Fazleeva, R.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrochemical synthesis of silver nanoparticles by reduction of AgCl nanospheres stabilized with cetyltrimethylammonium chloride, Russ. J. Electrochem., 2017, vol. 53, p.31.
  18. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Nastapova, N.V., and Osin, Yu.N., The role of solvent in methylviologen mediated electrosynthesis of silver nanoparticles stabilized with polyvinylpyrrolidone, Butlerov Commun., 2016, vol. 46, p.128.
  19. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fedorenko, S.V., Jilkin, M., Mustafina, A.R., Gubaidullin, A.T., and Osin, Y.N., Methylviologen mediated electrosynthesis of gold nanoparticles in the solution bulk, RSC Advances, 2016, vol. 6, p. 1851.
  20. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Fedorenko, S.V., Mustafina, A.R., and Osin, Y.N., Methylviologen-Mediated Electrochemical Synthesis of Platinum Nanoparticles in Solution Bulk, Russ. J. Electrochem., 2017, vol. 53, p.509.
  21. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Y.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, Electrochem. Commun., 2016, vol. 69, p.36.
  22. Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R., Nasretdinova, G.R., Sultanova, E.D., Ziganshina, A.Yu., Gubaidullin, A.T., Samigullina, A.I., Evtyugin, V.G., Vorobiev, V.V., and Osin, Y.N., Molucular oxygen as a mediator in electrosynthesis of metals nanoparticles in DMFA, Russ. J. Electrochem., 2018, vol. 54 (in press).
  23. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Yu.N., Gubaidullin, A.T., and Osin, Y.N., Fullerene mediated electrosynthesis of Au/C60 nanocomposite, ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 4, p. M19.
  24. Yanilkin, V.V., Nasretdinova, G.R., and Salnikov, V.V., Anthracene-mediated electrochemical synthesis of metallic cobalt nanoparticles in solution, Electrochim. Acta, 2015, vol. 168, p.82.
  25. Organic Electrochemistry, 2nd Ed., Eds. Baizer, M. and Lund, H., New York, Basel: Marcel Dekker, 1983.
  26. Mann, Ch. and Barnes, K., Electrochemical Reactions in Nonaqueous Systems, New York: Marcel Dekker, 1970.
  27. Tomilov, A.P., Fioshin, M.Ya., and Smirnov, V.A., Elektrokhimicheskii sintez organicheskikh veshchestv (Electrochemical Synthesis of Organic Compounds), Leningrad: Khimiya, 1976.
  28. Stepanov, A.S., Yanilkin, V.V., Nastapova, N.V., Mustafina, A.R., Burilov, V.A., Solov’eva, S.E., Antipin, I.S., and Konovalov, A.I. Thermodynamics of electrode reactions of nanoscale supramolecular systems based on calix[4]arenes and metal complexes, Vestn. Kaz. tech. univ., 2010, no. 2, p.122.
  29. DIFFRAC Plus Evaluation package EVA, Version 11, User’s Manual, Karlsruhe: Bruker AXS, 2005.
  30. TOPAS V3: General profile and structure analysis software for powder diffraction data. Technical Reference, Karlsruhe: Bruker AXS, 2005.
  31. Burstall, F.H. and Nyholm, R.S., Magnetic Moments and Bond Types of Transition-metal Complexes, Studies in Coordination Chemistry, 1952, p. 3570.
  32. Galus, Z., Fundamentals of Electrochemical Analysis, New York: Ellins Horwood, 1976.
  33. Tan, H., Santbergen, R., Smets, A.H.M., and Zeman, M., Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles, Nano Lett., 2012, vol. 12, p. 4070.