Examples



mdbootstrap.com



 
Статья
2021

Aging Study of a Paste Explosive Based on RDX/RTV (Cyclotrimethylenetrinitramine/Room Temperature Vulcanizing) Silicone Using Rheological Property


Hamid Reza PouretedalHamid Reza Pouretedal, Sajjad DamiriSajjad Damiri, Sheida NickmehrSheida Nickmehr, Maryam KazemiMaryam Kazemi
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221090093
Abstract / Full Text

A new extrudable and paste explosive based on cyclotrimethylenetrinitramine (RDX) explosive and a medical grade and uncured room temperature vulcanizing silicone rubber is developed and its rheological properties are experimentally studied in accelerated aging process at temperatures of 50, 60, and 70°C. Viscosity and shear stress of the unaged and aged samples are measured in the shear rate range of 10–3 to 100 s–1 in times of 30, 60, 90, 120, and 150 days. The studies showed that the apparent viscosity of the aged samples reduces with increasing of temperature and time of aging. The parameter of “n < 1” (fluid flow behavior index) is obtained by using power law in domain of 10–3 to 1 s–1 that showed a non-Newtonian and pseudoplastic behavior for aged and unaged samples. Also, the kinetic of viscosity loss of the samples is studied by using pseudo-first order model. The kinetic rate constants are obtained 1.2 × 10–4, 1.9 × 10–4, and 2.7 × 10–4 h–1 at temperatures of 50, 60, and 70°C, respectively. The activation energy of viscosity loss process is obtained 10896.7 kJ mol–1 by using Arrhenius equation. Multiple linear regression (MLR) method is used to extract of a model for prediction of viscosity of the aged samples. The regression equation is obtained Y = 3.66 – 0.44X1 – 0.02 × 0.1X2 – 0.01X3 with coefficient of regression (R2) value 0.97. Where, Y, X1, X2, and X3 are log (viscosity), log (shear rate), aging time and aging temperature, respectively. The reliability of the proposed model is confirmed by statistical parameters.

Author information
  • Faculty of Applied Sciences, 83145/115, Malek Ashtar University of Technology, IranHamid Reza Pouretedal, Sajjad Damiri, Sheida Nickmehr & Maryam Kazemi
References
  1. Shit, S.C. and Shah, P., National Academy Sci. Lett., 2013, vol. 36, pp. 355–365. https://doi.org/10.1007/s40009-013-0150-2
  2. Du, B., Publishing Series in Composites Science and Engineering, 2017, pp. 495–522. https://doi.org/10.1016/B978-0-08-100409-8.00014-0
  3. Zhao, X.W., Zang, C.G., Wen, Yu.Q., and Jiao, Q.J., J. Appl. Polymer Sci., 2015, vol. 132, pp. 42582–42586. https://doi.org/10.1002/app.42541
  4. Akhavan, J. and Andrews, M.R., Propell. Explos. Pyrot., 2010, vol. 35, pp. 425– 432. https://doi.org/10.1002/prep.200900068
  5. Von Holtz, E., Scribner, K., Whipple, R., and Carley, J., Abstracts of Papers, 21st Int. Annual Conference of ICT, Karlsruhe, Germany, July 3–6, 1990.
  6. Teipel, U., Energetic Materials: Particle Processing and Characterization, Weinheim: Wiley-VCH, 2004.
  7. Elbeih, A. , Pachman, J., Zeman, S., Trzciński, W., and Akštein, Z., a\Abstracts of Papers, Proceedings of the 14th Seminar of the New Trends in Research of Energetic Materials, Brno, Czech Republic, 2011.
  8. Zeman, E.S., Jungova, M., and Akstein, Z., Cent. Eur. J. Energ. Mat., 2012, vol. 9, pp. 131–138. https://ipo.lukasiewicz.gov.pl/wydawnictwa/wp-content/uploads/2021/03/Elbeih3.pdf.
  9. Elbeih, A., Hussein, A.K., Elshenawy, T., Zeman, S., Hammad, S.M., Baraka, A., Elsayed, M.A., Gobara, M., and Tantawy, H., Defence Technol., 2020, vol. 16, pp. 487–492. https://doi.org/10.1016/j.dt.2019.05.012
  10. Elbeih, A., Elshenawy, T., Amin, H., Hussein, A.K., Hammad, S.M., Hindawi, Int. J. Chem. Eng., 2019, ID 4017068, https://doi.org/10.1155/2019/4017068
  11. Malkin, A., Ilyin, S., Semakov, A., and Kulichikhin, V., Soft Matter, 2012, vol. 8, pp. 2607–2617. https://doi.org/10.1039/C2SM06950D
  12. Sugita, N., Nomura, S., and Kawaguchi, M., Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, vol. 328, pp. 114–122. https://doi.org/10.1016/j.colsurfa.2008.06.044
  13. Jyoti, B.V.S. and Baek, S.W., Int. J. Aeronautical & Space Sci., 2014, vol. 15, pp. 112–121. https://doi.org/10.5139/IJASS.2014.15.2.199
  14. Naeun, L., Youngdae, K., Jaehan, S., Sangkeun, H., Jeongseob, S., Keundeuk, L., Sangmook, L., Jaewook, L., Abstracts of Papers, AIP Conference Proceedings 1713, 020003, 2016. https://doi.org/10.1063/1.4942259
  15. Yan, Q.L., Zeman, S., and Elbeih, A., Thermochim. Acta, 2012, vol. 537, pp. 1–12. https://doi.org/10.1016/j.tca.2012.03.009
  16. Pouretedal, H.R., Damiri, S., and Zandi, A., Defence Technol., 2019, vol. 15, pp. 233–240. https://doi.org/10.1016/j.dt.2018.09.007
  17. Zhang, K. and Ni, O., J. Dispersion Sci. Technol., 2015, vol. 36, pp. 932–937. https://doi.org/10.1080/01932691.2014.942315
  18. Wang, L. and Fang, J., Cent. Eur. J. Energ. Mat., 2013, vol. 10, pp. 87–102. https://ipo.lukasiewicz.gov.pl/wydawnictwa/wp-content/uploads/2021/03/Wang.pdf.
  19. Teipel, U. and Forter-Barth, U., J. Aerosp. Technol. Manag., 2009, vol. 1, pp. 43–47. https://doi.org/10.5028/jatm.2009.01014347
  20. Abbasi, S. , Zebarjad, S.M., Baghban, S.H.N., Youssefi, A., and Ekrami-Kakhki, M., J. Therm. Anal. Calorim., 2016, vol. 123, pp. 81–89. https://doi.org/10.1007/s10973-015-4878-4
  21. Kalyon, D.M., J. Energ. Mat., 2006, vol. 24, pp. 213–245. https://doi.org/10.1080/07370650600791221
  22. Gupta, B.L., Varma, M., and Munjal, N.L., Propell. Explos. Pyrot., 1986, vol. 11, pp. 45–52. https://doi.org/10.1002/prep.19860110204
  23. Saedodin, S., Kashefi, M.H., and Bahrami, Z., J. Therm. Anal. Calorim., 2019, vol. 137, pp.1499–1511. https://doi.org/10.1007/s10973-019-08074-2
  24. Rahimi, S. and Peretz, A., Propell. Explos. Pyrot., 2007, vol. 32, pp.165–174. https://doi.org/10.1002/prep.200700018
  25. Pouretedal, H.R., Damiri, S., Nosrati, P., and Ghaemi, E.F., Defence Technol., 2018, vol. 14, pp. 126–131. https://doi.org/10.1016/j.dt.2017.11.007
  26. Sinapour, H., Damiri, S., Ravanbod, M., and Pouretedal, H.R., Propell. Explos. Pyrot., 2019, vol. 44, pp. 429-437. https://doi.org/10.1002/prep.201800236
  27. Pouretedal, H.R., Shevidi, O., Nasiri, M., Pourhasan, F.S., J. Iranian Chem. Soc., 2016, vol. 13, pp. 2267–2274. https://doi.org/10.1007/s13738-016-0945-4
  28. Pouretedal, H.R., Fallahgar, M., Pourhasan, F.S., and Nasiri, M., Iranian J. Catalysis, 2017, vol. 7, pp. 317–326. http://ijc.iaush.ac.ir/article_598347.html.
  29. Pouretedal, H.R., Damiri, S., and Shahsavan, A., Defence Technol., 2018, vol. 14, pp. 59–63. https://doi.org/10.1016/j.dt.2017.08.003