Статья
2019

Experimental and Theoretical Studies of Electrodialysis of Model Solutions Containing Aniline and Sulfuric Acid


N. V. Loza N. V. Loza , S. A. Loza S. A. Loza , N. A. Romanyuk N. A. Romanyuk , N. A. Kononenko N. A. Kononenko
Российский электрохимический журнал
https://doi.org/10.1134/S102319351909009X
Abstract / Full Text

Demineralization of a solution containing aniline and sulfuric acid was studied at different voltages on the electrodialyzer with heterogeneous anion-exchange membranes MA-41 and perfluorinated homogeneous cation-exchange membranes MF-4SK. The main mass transfer characteristics of the process were evaluated. The limiting current density was evaluated for the cation- and anion-exchange membrane. The limiting current density on the anion-exchange membrane was reached much earlier than on the cation-exchange membrane. Electrodialysis was found to be most effective at voltages of up to 6 V in a pair chamber.

Author information
  • Kuban State University, 350040, Krasnodar, Russia

    N. V. Loza, S. A. Loza, N. A. Romanyuk & N. A. Kononenko

References
  1. Marti-Calatayud, M.C., Buzzi, D.C., Garcia-Gabal-don, M., Ortega, E., Bernardes, A.M., Tenorio, J.A.S., and Perez-Herranz, V., Sulfuric acid recovery from acid mine drainage by means of electrodialysis, Desalination, 2014, vol. 16, p. 120.
  2. Volkov, V.V., Mchedlishvili, B.V., Roldugin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.B., Membranes and nanotechnologies, Nanotechnol. Russ., 2008, vol. 3, p. 656.
  3. Galama, A.H., Saakes, M., Bruning, H., Rijnaarts, H.H.M., and Post, J.W., Seawater predesalination with electrodialysis, Desalination, 2014, vol. 342, p. 61.
  4. Moon, S.-H. and Yun, S.-H., Process integration of electrodialysis for a cleaner environment, Curr. Opin. Chem. Eng., 2014, vol. 4, p. 25.
  5. Yaroslavtsev, A.B. and Nikonenko, V.V., Ion-exchange membrane materials: Properties, modification, and practical application, Nanotechnol. Russ., 2009, vol. 4, p. 137.
  6. Sata, T., Ion exchange membranes: Preparation, characterization, modification and application, R. Soc. Chem., 2004.
  7. Nagarale, R.K., Gohil, G.S., and Shahi, V.K., Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 2006, vol. 119, p. 97.
  8. Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications, Desalination, 2010, vol. 264, p. 268.
  9. Campione, A., Gurreri, L., Ciofalo, M., Micale, G., Tamburini, A., and Cipollina, A., Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, 2018, vol. 434, p. 121.
  10. Al-Saydeh, S.A., El-Naas, M.H., and Zaidi, S.J., Copper removal from industrial wastewater: A comprehensive review, J. Ind. Eng. Chem., 2017, vol. 56, p. 35.
  11. Song, Y. and Zhao, Z., Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques, Sep. Purif. Technol., 2018, vol. 206, p. 335.
  12. Lafi, R., Gzara, L., Lajimi, R.H., and Hafiane, A., Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process, Chem. Eng. Process., 2018, vol. 132, p. 105.
  13. Rotta, E.H., Bitencourt, C.S., Marder, L., and Bernardes, A.M., Phosphorus recovery from low phosphate-containing solution by electrodialysis, J. Membr. Sci., 2019, vol. 573, p. 293.
  14. Tanaka, N., Nagase, M., and Higa, M., Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances, Desalination, 2012, vol. 296, p. 81.
  15. Mikhaylin, S. and Bazinet, L., Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control, Adv. Colloid Interface Sci., 2016, vol. 229, p. 34.
  16. Shishkina, S.V., Alalykina, I., and Maslenikova, I.Yu., Electrodialysis of solutions containing surfactants, Russ. J. Electrochem., 1996, vol. 32, p. 265.
  17. Korngold, E., De Korosy, F., Rahay, R., and Taboch, M.F., Fouling of anion-selective membranes in electrodialysis, Desalination, 1970, vol. 8, p. 195.
  18. Slavinskaya, G.V. and Selemenev, V.F., Ful’vokisloty prirodnykh vod (Fulvic Acids of Natural Waters), Voronezh: Voronezh Gos. Univ., 2001.
  19. Bukhovets, A. and Eliseeva, T., Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution, J. Membr. Sci., 2010, vol. 364, p. 339.
  20. Zabolotsky, V.I., Pismenskaya, N.D., Lactionov, E.V., and Nikonenko, V.V., Prediction of the behavior of long electrodialysis desalination channels through testing short channels, Desalination, 1996, vol.107, p. 245.
  21. Metodicheskie ukazaniya po fotometricheskomu izmereniyu kontsentratsii anilina v vozdukhe rabochei zony (Guidelines for Photometric Measurement of Aniline Concentration in the Working Area) (appr. by the USSR Ministry of Health; December 12, 1988; no. 4731-88). http://base.consultant.ru/cons/cgi/online.cgi?req=doc;base=ESU;n=11446
  22. Zabolotsky, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transport in Membranes), Moscow: Nauka, 1996.
  23. Sukhotin, A.M., Spravochnik po elektrokhimii (Handbook in Electrochemistry), Leningrad: Khimiya, 1981, p. 488.
  24. Sycheva, A.A.-R., Falina, I.V., and Berezina, N.P., Sorption and conducting properties of perfluorinated MF-4SK membranes in aqueous solutions containing phenylammonium ions, Russ. J. Electrochem., 2009, vol. 45, p. 108.
  25. Chérif, M., Mkacher, I., Dammak, L., Ben Salah, A., Walha, K., Grande, D., and Nikonenko, V., Water desalination by neutralization dialysis with ion-exchange membranes: Flow rate and acid/alkali concentration effects, Desalination, 2015, vol. 361, p. 13.
  26. Loza, N.V., Kononenko, N.A., Shkirskaya, S.A., and Berezina, N.P., Effect of modification of ion-exchange membrane MF-4SK on its polarization characteristics, Russ. J. Electrochem., 2006, vol. 42, p. 815.