Статья
2017

Hopping charge transport in amorphous organic and inorganic materials with spatially correlated random energy landscape


S. V. Novikov S. V. Novikov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517030132
Abstract / Full Text

The general properties of the hopping transport of charge carriers in amorphous organic and inorganic materials are discussed. The case where the random energy landscape in the material is strongly spatially correlated is considered. This situation is typical of organic materials with the Gaussian density of states (DOS) and may also be realized in some materials with the exponential DOS. It is demonstrated that the different DOS types can lead to very different functional forms of the mobility field dependence even for the identical correlation function of random energy. Important arguments are provided in favor of the significant contribution of the local orientational order to the total magnitude of energetic disorder in organic materials. A simple but promising model of charge transport in highly anisotropic composites materials is proposed.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow, 119071, Russia

    S. V. Novikov

  • National Research University Higher School of Economics, Moscow, 101000, Russia

    S. V. Novikov

References
  1. Günes, S., Neugebauer, H., and Sariciftci, N.S., Chem. Rev., 2007, vol. 107, p. 1324.
  2. Shinar, J. and Shinar, R., J. Phys. D, 2008, vol. 41, p. 133001.
  3. Kim, J.J., Han, M.K., and Noh, Y.Y., Semicond. Sci. Technol., 2011, vol. 26, p. 030301.
  4. Mabeck, J.T. and Malliaras, G.G., Anal. Bioanal. Chem., 2006, vol. 384, p. 343.
  5. Shim, Y.-B. and Park, J.-H., J. Electrochem. Soc., 2000, vol. 147, p. 381.
  6. Organic Electrochemistry, Hammerich, O., Speiser, B., Eds., Boca Raton: CRC Press, 2016.
  7. Solid State Electrochemistry, Kharton, V.V., Ed., Boca Raton: Wiley-VCH, 2009, vol.1.
  8. The CRC Handbook of Solid State Electrochemistry, Gelling, P.J. and Bouwmeester, H.J.M., Eds., New York: CRC, 1997.
  9. Kuwata, N., Kawamura, J., Toribami, K., Hattori, T., and Sata, N., Electrochem. Commun., 2004, vol. 6, p. 417.
  10. Wang, X., Ma, Y., Raza, R., Muhammed, M., and Zhu, B., Electrochem. Commun., 2008, vol. 10, p. 1617.
  11. Knauth, P., Solid State Ionics, 2009, vol. 180, p. 911.
  12. Scher, H. and Montroll, E., Phys. Rev. B, 1975, vol. 12, p. 2455.
  13. Nenashev, A., Oelerich, J., and Baranovskii, S., J. Phys.: Condens. Matter, 2015, vol. 27, p. 093201.
  14. Miller, A. and Abrahams, E., Phys. Rev., 1960, vol. 120, p. 745.
  15. Marcus, R.A., J. Chem. Phys., 1956, vol. 24, p. 966.
  16. Chandler, D., Introduction to Modern Statistical Mechanics, Oxford: Oxford University, 1987.
  17. Bässler, H., Phys. Status Solidi B, 1993, vol. 175, p. 15.
  18. Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., de Leeuw, D.M., and Michels, M.A.J., Phys. Rev. Lett., 2005, vol. 94, p. 206601.
  19. Germs, W.C., van der Hulst, J.J.M., van Mensfoort, S.L.M., Bobbert, P.A., and Coehoorn, R., Phys. Rev. B, 2011, vol. 84, p. 165210.
  20. Charge Transport in Disordered Solids with Applications in Electronics, Baranovski, S., Ed., Chichester: Wiley, 2006.
  21. Rudenko, A.I. and Arkhipov, V.I., Philos. Mag. B, 1982, vol. 45, p. 209.
  22. Borsenberger, P.M., Magin, E.H., van der Auweraer, M., and de Schyver, F.C., Phys. Status Solidi A, 1993, vol. 140, p. 9.
  23. Schein, L.B. and Tyutnev, A.P., J. Phys. Chem. C, 2008, vol. 112, p. 7295.
  24. Deem, M. and Chandler, D., J. Stat. Phys., 1994, vol. 76, p. 911.
  25. Novikov, S.V. and Vannikov, A.V., J. Phys. Chem., 1995, vol. 99, p. 14573.
  26. Novikov, S.V., Dunlap, D.H., and Kenkre, V.M., Proc. SPIE, 1998, vol. 3471, p. 181.
  27. Novikov, S.V. and Vannikov, A.V., Mol. Cryst. Liq. Cryst., 2001, vol. 361, p. 89.
  28. Novikov, S.V., J. Chem. Phys., 2015, vol. 143, p. 164510.
  29. Novikov, S.V. and van der Auweraer, M., Phys. Rev. E, 2009, vol. 79, p. 041139.
  30. Dunlap, D.H., Parris, P.E., and Kenkre, V.M., Phys. Rev. Lett., 1996, vol. 77, p. 542.
  31. Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., and Vannikov, A.V., Phys. Rev. Lett., 1998, vol. 81, p. 4472.
  32. Novikov, S.V. and Tyutnev, A.P., J. Chem. Phys., 2013, vol. 138, p. 104120.
  33. Novikov, S.V., Ann. Phys. (Berlin, Ger.), 2009, vol. 18, p. 954.
  34. Borsenberger, P., Gruenbaum, W., and Magin, E., Physica B, 1996, vol. 228, p. 226.
  35. Borsenberger, P.M., Gruenbaum, W.T., and Magin, E.H., Phys. Status Solidi B, 1995, vol. 190, p. 555.
  36. Sinicropi, J., Cowdery-Corvan, J., Magin, E., and Borsenberger, P., Chem. Phys., 1997, vol. 218, p. 331.
  37. Heun, S. and Borsenberger, P.M., Chem. Phys., 1995, vol. 200, p. 245.
  38. Novikov, S.V., Polym. Sci., Ser. B, 2003, vol. 41, p. 2584.
  39. Parris, P.E., Dunlap, D.H., and Kenkre, V.M., Polym. Sci., Ser. B, 1997, vol. 35, p. 2803.
  40. Novikov, S.V., Ann. Phys. (Berlin, Ger.), 2009, vol. 18, p. 949.
  41. Novikov, S.V. and Vannikov, A.V., J. Phys. Chem. C, 2009, vol. 113, p. 2532.
  42. Dieckmann, A., Bäassler, H., and Borsenberger, P.M., J. Chem. Phys., 1993, vol. 99, p. 8136.
  43. Novikov, S.V. and Vannikov, A.V., J. Exp. Theor. Phys., 1994, vol. 79, p. 482.
  44. Madigan, C. and Bulovic, V., Phys. Rev. Lett., 2006, vol. 97, p. 216402.
  45. Devroye, L., Non-Uniform Random Variate Generation, Berlin: Springer, 1986.
  46. Parris, P.E., Kus, M., Dunlap, D.H., and Kenkre, V.M., Phys. Rev. E, 1997, vol. 56, p. 5295.
  47. May, F., Baumeier, C., Lennartz, C., and Andrienko, D., Phys. Rev. Lett., 2012, vol. 109, p. 136401.