Simultaneous Determination of Thiocolchicoside and Diclofenac Diethyl Ammonium in Topical Gel Formulation by Square Wave Voltammetric Method

 Sevilay Erdoğan Kablan Sevilay Erdoğan Kablan ,  Nuran Özaltın Nuran Özaltın
Российский электрохимический журнал
Abstract / Full Text

A rapid, simple, sensitive, precise and specific square wave voltammetric method was developed for the simultaneous determination of Thiocolchicoside (TC) and Diclofenac diethyl ammonium (DDA) in topical gel formulation. The combination of TC and DDA have synergetic action on the treatment of rheumatoid arthritis and other related conditions. The optimum conditions were obtained in Britton–Robinson buffer pH 3.00 for electroreduction at hanging mercury drop electrode. Well-defined peaks were observed for TC at –0.85 V, and for DDA at –1.18 V vs. Ag/AgCl/4.6 M KCl. Under optimum conditions, the linear response ranges for determination of TC and DDA were 1.07–24.2 µM and 5.64–45.8 µM, with detection limits of 0.54 and 3.25 µM, respectively. The electrochemical behaviors of the substances such as current type and reversibility of the electrode reactions were investigated by using cyclic voltammetry. The reduction mechanisms were also proposed. The method was validated with respect to accuracy, precision, sensitivity and specificity according to the International Conference on Harmonization guidelines. The developed method was applied for the simultaneous determination of TC and DDA in topical gel formulation including binary mixtures. The excipients present in the formulation did not interfere with the assay. The method is suitable for application in quality-control laboratories, because it is simple and rapid with high accuracy and precision.

Author information
  • Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Hacettepe, Turkey

    Sevilay Erdoğan Kablan &  Nuran Özaltın

  1. Rafiee-Tehrani, M. and Mehramizi, A., In-vitro release studies of piroxicam from oil-in-water creams and hydroalcoholic gel topical formulation, Drug Dev. Ind. Pharm., 2000, vol. 26, no. 4, p. 409.
  2. Payne, R., Factors influencing quality of life in cancer patients: the role of transdermal fentanyl in the management of pain, Semin. Oncol., 1998, vol. 25, no. 3, suppl. 7, p. 47.
  3. Knutson, K., Krill, S., Lambert, W., and Higuchi, W., Physicochemical aspects of transdermal permeation, J. Contr. Rel., 1987, vol. 6, no. 1, p. 59.
  4. Bucher, U. and Sanger, A., Diclofenac emulgel in the treatment of localized rheumatic disorders, Proc. 16th Int. Congr. on Rheumatology (IL: AR), Sydney, 1985.
  5. Janbroers, J., Review of the toxicology, pharmacodynamics and pharmacokinetics of thiocolchicoside, a GABA-agonist muscle relaxant with antinflammatory and analgesic action, Acta Ther., 1987, vol. 13, p. 221.
  6. John, V., The pharmacokinetics and metabolism of diclofenac sodium in animals and man, Rheumatol. Rehabil., 1979, suppl. 2, p. 22.
  7. Sengar, M., Gandhi, S., Patil, U., and Rajmane, V., Simultaneous determination of diclofenac sodium and thiocolchicoside in fixed dose combination by spectrophotometry, Asian J. Pharm. Clin. Res., 2010, vol. 3, no. 2, p. 89.
  8. El-Ragehy, N., Ellaithy, M., and El-Ghobashy, M., Determination of thiocolchicoside in its binary mixtures (thiocolchicoside-glafenine and thiocolchicoside-floctafenine) by TLCdensitometry, Il Farmaco, 2003, vol. 58, no. 6, p. 463.
  9. Rele, R.V.S. and Swapnil, A., Simultaneous determination of aceclofenac and thiocolchicoside by reverse phase high performance liquid chromatography form bulk drug and pharmaceutical dosage form, Der Pharm Sin., 2016, vol. 7, no. 1, p. 6.
  10. Suganthi, T.K.R.A., Application of stability – indicating RP-HPLC method for the simultaneous estimation of thiocolchicoside and aceclofenac in pharmaceutical dosage form, Am. J. Pharm. Tech. Res., 2013, vol. 3, no. 5, p. 327.
  11. Rele, R.V. and Mali, R., Advance simultaneous determination of paracetamol, thiocolchicoside and aceclofenac in tablets by reverse phase high performance liquid chromatography, Der Pharm Sin., 2014, vol. 5, no. 1, p. 34.
  12. Sandouk, P., Chappey, O., d’Yvoire, M.B., and Scherrmann, J.-M., Pharmacokinetics of thiocolchicoside in humans using a specific radioimmunoassay, Ther. Drug Monit., 1995, vol. 17, no. 5, p. 544.
  13. Agatonović-Kuštrin, S., Žvanović, L., Zečević, M., and Radulović, D., Spectrometric study of diclofenac-Fe(III) complex, J. Pharm. Biomed. Anal., 1997, vol. 16, no. 1, p. 147.
  14. Matin, A., Farajzadeh, M., and Jouyban, A., A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations, Il Farmaco, 2005, vol. 60, no. 10, p. 855.
  15. Rathnam, M. and Singh, R., Simultaneous rp-hplc determination of camylofin dihydrochloride and diclofenac potassium in pharmaceutical preparations, Pharm. Anal. Acta, 2010, vol. 1, p. 1.
  16. Hafsa, D., Chanda, S., and Prabhu, P.J., Simultaneous HPLC determination of methocarbamol, paracetamol and diclofenac sodium, J. Chem., 2011, vol. 8, no. 4, p. 1620.
  17. Hussein, R.F.H. and Muhammad, M., Fully validated diclofenac HPLC assay, Anal. Chem. Indian J., 2009, vol. 8, no. 2, p. 124.
  18. Gangwal, S. and Trivedi, P., Liquid chromatographic determination of diclofenac sodium and chlorzoxazone from tablets, East. Pharmacist., 2000, vol. 43, p. 139.
  19. Devi, K. and Paranjothy, K., Pharmacokinetic profile of a new matrix-type transdermal delivery system: diclofenac diethyl ammonium patch, Drug Dev. Ind. Pharm., 1999, vol. 25, no. 5, p. 695.
  20. Lopes de Macedo, I.Y., Alecrim, M.F., Garcia, L.F., Ribeiro de Souza, A., Pio dos Santos, W.T., de Souza Gil, E., Cubillana-Aguilera, L.M., and Palacios-Santander, J.M., Differential pulse voltammetric determination of piroxicam on lanthanide ferric oxide nanoparticles-carbon paste modified electrode, Curr. Pharm. Anal., 2018, vol. 14, no. 3, p. 271.
  21. Goyal, R.N., Gupta, V.K., Oyama, M., and Bachheti, N., Differential pulse voltammetric determination of paracetamol at nanogold modified indium tinoxide electrode, Electrochem. Commun., 2005, vol. 7, no. 8, p. 803.
  22. Valezi, C.F., Duarte, E.H., Mansano, G.R., Dall’Antonia, L.H., Tarley, C.R.T., and Sartori, E.R., An improved method for simultaneous SWV determination of amlodipine and enalapril at multi-walled carbon nanotubespaste electrode based on effect of cationic surfactant, Sens. Actuators B: Chem., 2014, vol. 205, p. 234.
  23. Duarte, E.H., dos Santos, W.P., Hudari, F.F., Neto, J.L.B., Sartori, E.R., Dall, L.H., Pereira, A.C., and Tarley, C.R.T., A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid, Talanta, 2014, vol. 127, p. 26.
  24. Gupta, V.K., Jain, R., Radhapyari, K., Jadon, N., and Agarwal, S., Voltammetric techniques for the assay of pharmaceuticals a review, Anal. Biochem., 2011, vol. 408, no. 2, p. 179.
  25. Uslu, B. and Ozkan, S.A., Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments, Anal. Lett., 2011, vol. 44, no. 16, p. 2644.
  26. Scholz, F., Electroanalytical Methods—Guide to Experiments and Applications, Springer, 2010.
  27. Dogan-Topal, B., Ozkan, S.A., and Uslu, B., The analytical applications of square wave voltammetry on pharmaceutical analysis, Open Chem. Biomed. Methods J., 2010, vol. 3, p. 56.
  28. Mirceski, V., Komorsky-Lovric, S., and Lovric, M., Square Wave Voltammetry Theory and Application, Scholz, F., Ed., Berlin: Springer-Verlag, 2007.
  29. O’Dea, J., Osteryoung, J.G., and Osteryoung, R.A., Theory of square wave voltammetry for kinetic systems, Anal. Chem., 1981, vol. 53, p. 695.
  30. Montenegro, M.I., Queiras, M.A., and Daschbach, J.L., Microelectrodes: Theory and Applications, Kuwer Academic Publ., 1990.
  31. Kalousek, M., A study of reversibility of processes at the dropping mercury electrode by changing discontinuously the polarizing voltage, Collect. Czech. Chem. Commun., 1948, vol. 13, p. 105.
  32. Osteryoung, J.G. and Osteryoung, R.A., Square wave voltammetry, Anal. Chem., 1985, vol. 57, p. 101A.
  33. Aleksić, M.M. and Kapetanović, V., Voltammetric behavior and square-wave voltammetric determination of cefotaxime in urine, J. Electroanal. Chem., 2006, vol. 593, nos. 1–2, p. 258.
  34. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, 2001, p. 482.
  35. Li, C., Electrochemical determination of dipyridamole at a carbon pasteelectrode using cetyltrimethyl ammonium bromide as enhancing element, Colloids Surf. B, Biointerfaces, 2007, vol. 55, no. 1, p. 77.
  36. Kanoute, P.B.G. and Guemet, M., Electrochemical reduction of phenylpropionic acid derivatives having anti-inflammatory activity, Bull. Soc. Chim. Fr., 1984, p. 49.
  37. Xu, M., Chen, L., and Song, J., Polarographic behaviors of diclofenac sodium in the presence of dissolved oxygen and its analytical application, Anal. Biochem., 2004, vol. 329, no. 1, p. 21.
  38. Prasada, B., SubbaNaidua, N.V., and Saraswathib, K., Polarographic determination of Cr(VI) in environmental samples using catalytic hydrogen currents, IOSR J. Eng., 2012, vol. 2, no. 7, p. 19.
  39. Mirčeski, V., Skrzypek, S., Ciesielski, W., and Sokolowski, A., Theoretical and experimental study of the catalytic hydrogen evolution reaction in the presence of an adsorbed catalyst by means of square-wave voltammetry, J. Electroanal. Chem., 2005, vol. 585, p. 97.
  40. Skrzypek, S., Mirčeski, V., Ciesielski, W., Sokołowski, A., and Zakrzewski, R., Direct determination of metformin in urine by adsorptive catalytic square-wave voltammetry, J. Pharm. Biomed. Anal., 2007, vol. 45, no. 2, p. 275.
  41. Erdogan, D.A., Tasdemir, İ.H., Erk, N., and Kilic, E., Electrochemical behavior of moclobemide at mercury and glassy carbon electrodes and voltammetric methods for its determination, Collect. Czechoslovak Chem. Commun., 2011, vol. 76, no. 5, p. 423.
  42. Alarfaj, N.A., Square-wave adsorptive stripping voltammetric determination of antihypertensive agent telmisartan in tablets and its application to human plasma, J. Anal. Chem., 2013, vol. 68, no. 4, p. 335.
  43. Mairanovskii, S., The theory of catalytic hydrogen waves in organic polarography, J. Electroanal. Chem., 1963, vol. 6, no. 2, p. 77.
  44. Walter Holak, W.M.P., Differential pulse polarographic determination of colchicine, J. Pharm. Sci., 1980, vol. 69, no. 12, p. 1436.
  45. Bodoki, E., Vlase, L., and Sandulescu, R., Mechanistic study of colchicine’s reduction behavior, Electrochem. Commun., 2015, vol. 56, p. 51.
  46. Bond, A.M., Modern Polarographic Methods in Analytical Chemistry, CRC Press, 1980, vol. 4.
  47. Guideline, I.H.T., Validation of analytical procedures: text and methodology, Topic Q2 (R1), 2005.