Potentially implantable biocathode with the function of charge accumulation based on nanocomposite of polyaniline/carbon nanotubes

Yu. M. ParunovaYu. M. Parunova, S. O. BushnevS. O. Bushnev, E. Gonzalez-ArribasE. Gonzalez-Arribas, P. FalkmanP. Falkman, A. V. LipkinA. V. Lipkin, V. O. PopovV. O. Popov, S. V. ShleevS. V. Shleev, D. V. PankratovD. V. Pankratov
Российский электрохимический журнал
Abstract / Full Text

A potentially implantable biocathode with the function of charge accumulation based on a nanobiocomposite including multiwall carbon nanotubes, polyaniline, and bilirubin oxidase is developed. The regularities of the functioning of the obtained electrode are studied in air–saturated phosphate buffer solution, pH 7.4 (PB), and also in phosphate buffer solution containing redox–active blood components (BMB). The open circuit potential of the biocathode is 0.33 and 0.08 V vs. the saturated calomel electrode in PB and BMB, respectively; it is completely restored after at least three self-charge/discharge cycles with connection to resistors with different resistance. Bioelectrocatalytic current density of oxygen reduction is 0.50 and 0.42 mA cm–2 with the residual activity of 78 and 60% of the initial value after 12 h of continuous operation in PB at 25°C and in BMB at 37°C, respectively.

Author information
  • National Research Institute “Kurchatov Institute,”, Moscow, 123182, RussiaYu. M. Parunova, S. O. Bushnev, A. V. Lipkin, V. O. Popov, S. V. Shleev & D. V. Pankratov
  • Department of Biomedical Science, Malmö University, Malmö, 20506, SwedenE. Gonzalez-Arribas, P. Falkman, S. V. Shleev & D. V. Pankratov
  1. Cinquin, P., Gondran, C., Giroud, F., Mazabrard, S., Pellissier, A., Boucher, F., Alcaraz, J.P., Gorgy, K., Lenouvel, F., Mathe, S., Porcu, P., and Cosnier, S., PLoS One, 2010, vol. 5, p. e10476.
  2. Shleev, S., Bergel, A., and Gorton, L., Bioelectrochemistry, 2015, no. 106, p. 1.
  3. Pankratov, D., Blum, Z., and Shleev, S., ChemElectro-Chem., 2014, no. 1, p. 1798.
  4. Pankratov, D., Blum, Z., Suyatin, D.B., Popov, V.O., and Shleev, S., ChemElectroChem., 2014, no. 1, p. 343.
  5. Pankratov, D., Falkman, P., Blum, Z., and Shleev, S., Energy Environ. Sci., 2014, no. 7, p. 989.
  6. Agnes, C., Holzinger, M., Le Goff, A., Reuillard, B., Elouarzaki, K., Tingry, S., and Cosnier, S., Energy Environ. Sci., 2014, no. 7, p. 1884.
  7. Falk, M., Villarrubia, C.W.N., Babanova, S., Atanassov, P., and Shleev, S., ChemPhysChem., 2013, no. 14, p. 2045.
  8. Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., and Beguin, F., Carbon, 2006, no. 44, p. 1106.
  9. Harrison, B.S. and Atala, A., Biomaterials, 2007, no. 28, p. 344.
  10. Minteer, S.D., Atanassov, P., Luckarift, H.R., and Johnson, G.R., Mater. Today, 2012, no. 15, p. 166.
  11. Falk, M., Pankratov, D., Blum, Z., and Shleev, S., Implantable Bioelectronics, Katz, E., Ed., Weinheim: Wiley-VCH, 2014, pp. 315–346.
  12. Meiyazhagan, A., Thangavel, S., Daniel, P.H., Pulickel, M.A., and Palanisamy, T., Mater. Chem. Phys., 2015, no. 157, p. 8.
  13. Gomathi, P., Kim, M.K., Park, J.J., Ragupathy, D., Rajendran, A., Lee, S.C., Kim, J.C., Lee, S.H., and Ghim, H.D., Sens._Actuators, B, 2011, no. 155, p. 897.
  14. Li, R.X., Guo, D.Y., Ye, J.S., and Zhang, M.N., Analyst, 2015, no. 140, p. 3746.
  15. Zhang, N., Luan, P.S., Zhou, W.Y., Zhang, Q., Cai, L., Zhang, X., Zhou, W.B., Fan, Q.X., Yang, F., Zhao, D., Wang, Y.C., and Xie, S.S., Nano Res., 2014, no. 7, p. 1680.
  16. Spinks, G.M., Mottaghitalab, V., Bahrami-Saniani, M., Whitten, P.G., and Wallace, G.G., Adv. Mater., 2006, no. 18, p. 637.
  17. Qazi, T.H., Rai, R., and Boccaccini, A.R., Biomaterials, 2014, no. 35, p. 9068.
  18. Balint, R., Cassidy, N.J., and Cartmell, S.H., Acta Biomater., 2014, no. 10, p. 2341.
  19. Xu, S. and Minteer, S.D., ACS Catal., 2014, no. 4, p. 2241.
  20. Christwardana, M. and Kwon, Y., J. Power Sources, 2015, no. 299, p. 604.
  21. Schubart, I.W., Gobel, G., and Lisdat, F., Electrochim. Acta, 2012, no. 82, p. 224.
  22. Kashyap, D., Kim, C., Kim, S.Y., Kim, Y.H., Kim, G.M., Dwivedi, P.K., Sharma, A., and Goel, S., Int. J. Hydrogen Energy, 2015, no. 40, p. 9515.
  23. Wang, X.J., Sjoberg-Eerola, P., Immonen, K., Bobacka, J., and Bergelin, M., J. Power Sources, 2011, no. 196, p. 4957.
  24. Vaz-Dominguez, C., Campuzano, S., Rudiger, O., Pita, M., Gorbacheva, M., Shleev, S., Fernandez, V.M., and De Lacey, A.L., Biosens. Bioelectron., 2008, no. 24, p. 531.
  25. Pankratov, D.V., Zeifman, Y.S., Morozova, O.V., Shumakovich, G.P., Vasil’eva, I.S., Shleev, S., Popov, V.O., and Yaropolov, A.I., Electroanalysis, 2013, no. 25, p. 1143.
  26. Andoralov, V., Falk, M., Suyatin, D.B., Granmo, M., Sotres, J., Ludwig, R., Popov, V.O., Schouenborg, J., Blum, Z., and Shleev, S., Sci. Rep., 2013, no. 3, p. 3270.
  27. Rasmussen, M., Ritzmann, R.E., Lee, I., Pollack, A.J., and Scherson, D., J. Am. Chem. Soc., 2012, no. 134, p. 1458.
  28. Lykkesfeldt, J., Cancer Epidemiol., Biomarkers Prev., 2007, no. 16, p. 2513.
  29. Wiecek, M., Maciejczyk, M., Szymura, J., and Szygula, Z., Physiol. Res., 2015, no. 64, p. 93.
  30. Liu, Y., Su, Z.H., Zhang, Y., Chen, L., Gu, T.A., Huang, S.Y., Liu, Y., Sun, L.G., Xie, Q.J., and Yao, S.Z., J. Electroanal. Chem., 2013, no. 70, p. 19.
  31. Bonastre, A.M. and Bartlett, P.N., Anal. Chim. Acta, 2010, no. 676, p. 1.
  32. Manivel, P., Dhakshnamoorthy, M., Balamurugan, A., Ponpandian, N., Mangalaraj, D., and Viswanathan, C., RSC Adv., 2013, no. 3, p. 14428.
  33. Hirose, J., Inoue, K., Sakuragi, H., Kikkawa, M., Minakami, M., Morikawa, T., Iwamoto, H., and Hiromi, K., Inorg. Chim. Acta, 1998, no. 273, p. 204.
  34. Xu, F., Berka, R.M., Wahleithner, J.A., Nelson, B.A., Shuster, J.R., Brown, S.H., Palmer, A.E., and Solomon, E.I., Biochem. J., 1998, no. 334, p. 63.
  35. Salaj-Kosla, U., Pöller, S., Beyl, Y., Scanlon, M.D., Beloshapkin, S., Shleev, S., Schuhmann, W., and Magner, E., Electrochem. Commun., 2012, no. 16, p. 92.
  36. Cui, C.Q. and Lee, J.Y., J. Electroanal. Chem., 1994, no. 367, p. 205.