Статья
2018

Pt(Cu)/C Electrocatalysts with Low Platinum Content


A. A. Alekseenko A. A. Alekseenko , S. V. Belenov S. V. Belenov , V. S. Menshikov V. S. Menshikov , V. E. Guterman V. E. Guterman
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518050026
Abstract / Full Text

The structure characteristics and the electrochemical behavior of Pt(Cu)/C electrocatalysts synthesized by consecutive deposition of copper and platinum on carbon-support microparticles is studied. The stability and catalytic activity of Pt(Cu)/C materials in reactions of oxygen electroreduction and methanol electrooxidation are assessed and compared with analogous characteristics of a commercial Pt/C material. It is shown that combining the method of galvanic displacement of Cu by Pt with the additional chemical deposition of Pt favors optimization of the structure and functional characteristics of Pt(Cu)/C electrocatalysts. The effect of thermal treatment on the characteristics and properties of electrocatalysts is studied and the optimal conditions of such pretreatment are revealed.

Author information
  • Faculty of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia

    A. A. Alekseenko, S. V. Belenov, V. S. Menshikov & V. E. Guterman

References
  1. Lv, H., Li, D., Strmcnik, D., Paulikas, A.P., Markovic, N.M., and Stamenkovic, V.R., Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction, Nano Energy, 2016, vol. 29, p.149.
  2. Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C.A., Wang, G., Ross P.N., and Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 2007, vol. 6, p.241.
  3. Oezaslan, M., Hasche, F., and Strasser, P., Pt-Based core–shell catalyst architectures for oxygen fuel cell electrodes, J. Phys. Chem. Lett., 2013, vol. 4, p. 3273.
  4. Ge, X., Chen, L., Kang, J., Fujita, T., Hirata, A., Zhang, W., Jiang, J., and Chen, M., A core–shell nanoporous Pt–Cu catalyst with tunable composition and high catalytic activity, Adv. Funct. Mater, 2013, vol. 23, p. 4156.
  5. Ammam, M. and Easton, E.B., PtCu/C and Pt(Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation, J. Power Sources, 2013, vol. 222, p.79.
  6. Luo, M., Wei, L., Wang, F., Han, K., and Zhu, H., Gram-level synthesis of core–shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells, J. Power Sources, 2014, vol. 270, p.34.
  7. Thompsett, D., Catalysts for the proton exchange membrane fuel cell, in Handbook of Fuel Cells. Fundamentals, Technology and Applications, Vol. 3, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., Chichester (UK): Wiley, 2003.
  8. Lv, Q., Chang, J., Xing, W., and Liu, Ch., Dispersioncontrolled PtCu clusters synthesized with citric acid using galvanic displacement with high electrocatalytic activity toward methanol oxidation, RSC Adv., 2014, vol. 4, p. 32997.
  9. Xu, C., Liu, Yu., Wang, J., Geng, H., and Qiu, H., Fabrication of nanoporous Cu–Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4626.
  10. Ou, L., The origin of enhanced electrocatalytic activity of Pt–M (M = Fe, Co, Ni, Cu, and W) alloys in PEM fuel cell cathodes: A DFT computational study, Comput. Theor. Chem., 2014, vol. 1048, p.69.
  11. Yang, H., Platinum-based electrocatalysts with core–shell nanostructures, Angew. Chem., Int. Ed., 2011, vol. 50, p. 2674.
  12. Singh, R.N., Awasthi, R., and Sharma, C.S., Review: An overview of recent development of platinum-based cathode materials for direct methanol fuel cells, Int. J. Electrochem. Sci., 2014, vol. 9, p. 5607.
  13. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1609.
  14. Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core–shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.
  15. Lin, R., Zhao, T., Shang, M., Wang, J., Tang, W., Guterman, V., and Ma, J., Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell, J. Power Sources, 2015, vol. 293, p.274.
  16. Sarkar, A. and Manthiram, A., Synthesis of Pt@Cu core–shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells, J. Phys. Chem. C, 2010, vol. 114, p. 4725.
  17. Bezerra, C.W.B., Zhang, L., Liu, H., Lee, K., Marqués, A.L.B., Marques, E.P., Wang, H., and Zhang, J., A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, J. Power Sources, 2007, vol. 173, p.891.
  18. Valisi, A.N., Maiyalagan, T., Khotseng, L., Linkov, V., and Pasupathi, S., Effects of heat treatment on the catalytic activity and methanol tolerance of carbon-supported platinum alloys, Electrocatalysis, 2012, vol. 3, p.108.
  19. Carbonio, E.A., Colmati, F., Ciapina, E.G., Pereira, M.E., and Gonzalez, E.R., Pt–Cu/C and Pd modified Pt–Cu/C electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells, J. Braz. Chem. Soc., 2010, vol. 21, p.590.
  20. Yu, F. and Zhou, W., Alloying and dealloying of CuPt bimetallic nanocrystals, Progr. Nat. Sci.: Mater. Intern., 2013, vol. 23, p.331.
  21. Zhang, J., Ma, J., Wan, Y., Jiang, J., and Zhao, X.S., Dendritic Pt–Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation, Mater. Chem. Phys., 2012, vol. 132, p.244.
  22. Chandran, R. and Dharmalingam, S., Facile synthesis and characterization of PtCu core–shell and alloy nanoparticles, Nanosci. Nanotechnol., 2014, vol. 14, p.1.
  23. Marcu, T.G., Srivastava, R., and Strasser, P., Preparation, characterization and degradation mechanisms of PtCu alloy nanoparticles for automotive fuel cells, J. Power Sources, 2012, vol. 208, p.288.
  24. Ge, X., Chen, L., Kang, J., Fujita, T., Hirata, A., Zhang, W., Jiang, J., and Chen, M., A core–shell nanoporous Pt–Cu catalyst with tunable composition and high catalytic activity, Adv. Funct. Mater, 2013, vol. 23, p. 4156.
  25. Zhang, J., Ma J., Wan, Y., Jiang, J., and Zhao, X.S., Dendritic Pt–Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation, Mater. Chem. Phys., 2012, vol. 132, p.244.
  26. Wang, Y., Zhou, H., Sun, P., and Chen, T., Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts, J. Power Sources, 2014, vol. 245, p.663.
  27. Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskiy, I.N., and Guterman, V.E., Cu@Pt/C catalysts: synthesis, structure, activity in oxygen reduction reaction, Kondens. Sredy Mezhfaznye Granitsy, 2016, vol. 18, p.460.
  28. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnol. Russ., 2016, vol. 11, p.287.
  29. Van der Vliet, D., Strmcnik, D.S., Wang, C., Stamenkovic, V.R., Markovic, N.M., and Koper, M.T.M., On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the oxygen reduction reaction, J. Electroanal. Chem., 2010, vol. 647, p.29.
  30. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness, J. Electrochem. Soc., 2015, vol. 162, p. F1384.
  31. Khudhayer, W.J., Kariuki, N.N., Wang, X., Myers, D.J., Shaikh, A.U., and Karabacak, T., Oxygen reduction reaction electrocatalytic activity of glancing angle deposited platinum nanorod arrays, J. Electrochem. Soc., 2011, vol. 158, p. B1029.
  32. Gasteiger, H.A., Kocha, Sh.S., Sompalli, B., and Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal., B, 2005, vol. 56, p.9.
  33. Pryadchenko, V.V., Srabionyan, V.V., Belenov, S.V., Volochaev, V.A., Kurzin, A.A., Avakyan, L.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu nanoparticles in PtCu/C electrocatalysts: structural and electrochemical characterization, Appl. Catal., A, 2016, vol. 525, p.226.
  34. Valisi, A.N., Maiyalagan, T., Khotseng, L., Linkov, V., and Pasupathi, S., Effects of heat treatment on the catalytic activity and methanol tolerance of carbon-supported platinum alloys, Electrocatalysis, 2012, vol. 3, p.108.
  35. Shao-Horn, Y., Sheng, W.C., Chen, S., Ferreira, P.J., Holby, E.F., and Morgan, D., Instability of supported platinum nanoparticles in low-temperature fuel cells, Top. Catal., 2007, vol. 46, p.285.
  36. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Yu., and Volochaev, V.A., The relationship between activity and stability of deposited platinum–carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p.531.
  37. Iwasita, T., Electrocatalysis of methanol oxidation, Electrochim. Acta, 2002, vol. 47, p. 3663.