Статья
2019

Active Layer Thickness Effect on the Behavior of Electrodes Based on Lithium Iron Phosphate


E. K. Tusseeva E. K. Tusseeva , T. L. Kulova T. L. Kulova , A. M. Skundin A. M. Skundin , A. K. Galeeva A. K. Galeeva , A. P. Kurbatov A. P. Kurbatov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519020150
Abstract / Full Text

The effect of the active layer thickness (the amount of active material per unit area of the electrode) on the behavior of electrodes based on lithium iron phosphate was first studied by methods of galvanostatic cycling and cyclic voltammetry. When considering the electrode as a system with doubly distributed parameters (distribution of material composition along the individual LiFePO4 grain radius and distribution of the process along the depth of the active layer), it was concluded that the distribution of the process over the depth of the active layer is much more pronounced than in the bulk of individual grains of lithium iron phosphate. It is assumed that such conclusion will be valid for electrodes from other materials.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    E. K. Tusseeva, T. L. Kulova & A. M. Skundin

  • Center of Physical Chemical Methods of Research and Analysis, Almaty, Kazakhstan

    A. K. Galeeva

  • Al-Farabi Kazakh National University, Almaty, Kazakhstan

    A. P. Kurbatov

References
  1. Yuan, L.-X., Wang, Z.-H., Zhang, W.-X., Hu, X.-L., Chen, J.-T., Huang, Y.-H., and Goodenough, J.B., Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy Environ. Sci., 2011, vol. 4, p. 269.
  2. Wang, Y., He, P., and Zhou, H., Olivine LiFePO4: development and future, Energy Environ. Sci., 2011, vol. 4, p. 805.
  3. Wang, J. and Sun, X., Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ. Sci., 2015, vol. 8, p. 1110.
  4. Gong, C., Xue, Z., Wen, S., Ye, Y., and Xie, X., Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries, J. power Sources, 2016, vol. 318, p. 93.
  5. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. power Sources, 2017, vol. 343, p. 395.
  6. Yu, D.Y.W., Donoue, K., Inoue, T., Fujimoto, M., and Fujitani, S., Effect of Electrode Parameters on LiFePO4 Cathodes, J. Electrochem. Soc., 2006, vol. 153, p. A835.
  7. Ke, L., Lv, W., Su F.-Y., He, Y.-B., You, C.-H., Li, B., Li, Z., Yang, Q.-H., and Kang, F., Electrode thickness control: Precondition for quite different functions of graphene conductive additives in LiFePO4 electrode, Carbon, 2015, vol. 92, p. 311.
  8. Roberts, M.R., Madsen, A., Nicklin, C., Rawle, J., Palmer, M.G., Owen, J.R., and Hecto, A.L., Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries, J. phys. Chem. C, 2014, vol. 118, p. 6548.
  9. Tusseeva, E.K., Kulova, T.L., Skundin, A.M., Galeeva, A.K., and Kurbatov, A.P., Temperature Effects on the Behavior of Lithium Iron Phosphate Electrodes, Russ. J. Electrochem, 2019, vol. 55, p. 194.
  10. Avci, E., Mazman, M., Uzun, D., Biçer, E., and Şener, T., High performance LiFePO4/CN cathode material promoted by polyaniline as carbon—nitrogen precursor, J. power Sources, 2013, vol. 240, p. 328.
  11. Gao, H., Jiao, L., Yang, J., Qi, Z., Wang, Y., and Yuan, H., High rate capability of Co-doped LiFePO4/C, Electrochim. Acta, 2013, vol. 97, p. 143.
  12. Du, J., Jiao, L., Wu, Q., Liu, Y., Qi, Z., Guo, L., Wang, Y., Huatang, and Yuan, H., Mesoporous LiFePO4 microspheres for rechargeable lithium-ion batteries, Electrochim. Acta, 2013, vol. 98, p. 288.