Specific Mass and Energy-Storage Properties of Carbon Electrodes Based on NORIT DLC SUPRA 50 Activated Carbon

V. V. Chernyavina V. V. Chernyavina , A. G. Berezhnaya A. G. Berezhnaya
Российский электрохимический журнал
Abstract / Full Text

The effect of the carbon-material specific mass on the electrochemical parameters of electrodes for supercapacitors on neutral aqueous electrolytes is studied. It is shown that the highest specific capacitance of 11 F/g is observed for electrodes with the specific mass of 1 mg/cm2. These electrodes are stable at the potential scan rate from 2 to 600 mV/s, in contrast to electrodes with the specific mass of 6 mg/cm2. As the power increases, the decrease in the specific energy of the electrode with the mass of 1 mg/cm2 is less pronounced as compared with the electrode with the mass of 6 mg/cm2. The specific energy of the former electrode is 8 W h/kg for the specific power of 20000 W/kg, whereas for the specific energy of the latter electrode is 5 W h/kg for the specific power of 2000 W/kg.

Author information
  • Southern Federal University, Rostov-on-Don, 344000, Russia

    V. V. Chernyavina & A. G. Berezhnaya

  1. Bonnefoia, L., Simona, P., Fauvarquea, J.F., Sarrazinb, C., Sarraub, J.F., and Dugasta, A., Electrode compositions for carbon power supercapacitors, J. Power Sources, 1999, vol. 80, p. 149.
  2. Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M. A., Kvacheva, L.D., Konev D.V., Krestinin N.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chernobrodov, S.P., Prospective electrode materials for super-capacitors, Elektrokhim. Energ., 2012, vol. 12, no. 4, p. 167.
  3. Salitra, G., Soffer, A., Eliad, L., Cohen, Y., and Aurbach, D., Carbon electrodes for double-layer capacitors. I. Relations between ion and pore dimensions, J. Electrochem. Soc., 2000, vol. 147, p. 2486.
  4. Atamanyuk, I.N., Vervikishko, D.E., Grigorenko, A.V., Sametov, A.A., Shkol’nikov, E.I., and Yanilkin, I.V., Study of the influence of the electrodes production technological features on the electrochemical characteristics of super-capacitor with the aqueous electrolyte, Elektrokhim. Energ., 2014, vol. 14, no. 1, p. 3.
  5. Frackowiak, E. and Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, vol. 39, p. 937.
  6. Gamby, J., Taberna, P.L., Simon, P., Fauvarque, J.F., and Chesneau, M., Studies and charactersations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources, 2001, vol. 101, p. 109.
  7. Burke, A.F. and Miller, J.R., Electrochemical capacitors: challenges and opportunities for real-world applications, Proc. Advanced Capacitor Word Summit, USA, San Diego, 2009, p. 5.
  8. Radeke, K.H., Backhaus, K.O., and Swiatkowski, A., Electrical conductivity of activated carbons, Carbon, 1991, vol. 29, p. 122.
  9. Beidaghi, M., Wang, Z., Gu, L., and Wang, C., Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes, J. Solid State Electrochem., 2012, vol. 16, p. 3341.
  10. Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q., and Yan, Z.F., Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006, vol. 44, p. 216.
  11. Conway, B.E., Electrochemical Supercapacitors—Scientific Fundamentals and Technological Applications, NewYork: Kluwer Academic/Plenum, 1999.