Effect of the Doping Anion Replacement on the Polyaniline Electrochemical Behavior

V. V. Abalyaeva V. V. Abalyaeva , O. N. Efimov O. N. Efimov
Российский электрохимический журнал
Abstract / Full Text

Samples of polyaniline synthesized from aniline sulfate were electrochemically cycled in LiCl, LiClO4, and lithium tetracyanoquinodimethane, with the electrolyte replacement. In all studied cases, the polyaniline is shown to retain its electrochemical activity upon the electrolyte and doping anion replacement. The electrochemical activity with the Cl and \({\text{ClO}}_{4}^{ - },\) dopants is reduced in the first cycles upon the electrolyte replacement; however, in the subsequent cycles the reduction decreased. When the electrode under testing has been returned to the native electrolyte, its electrochemical activity and electrochemical capacitance increased, recovering their initial values. When polyaniline has been doped with the tetracyanoquinodimethane anion, each next cycling series revealed an increase in its electrochemical activity, which manifests itself in the cyclic voltammogram area, as well as increase in the electrochemical capacitance from one cycling series to the next one.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    V. V. Abalyaeva & O. N. Efimov

  1. Abdullin, T.I., Nikitina, I.I., Evtugin, G.A., Budnikov, G.K., and Manapova, L.Z., Electrochemical properties of a two-component DNA-polyaniline film at the surface of glassy carbon electrode, Russ. J. Electrochem., 2007, vol. 41, p. 1284.
  2. Sun, L., Liu, H., Clark, R., and Yang, S.C., Double-Strand polyaniline, Synth. Met., 1997, vol. 84, p. 67.
  3. Liu, W., Anagnostopoulos, A., Bruno, F.F., Senecal, K., Kumar, J., Tripathy, S., and Samuelson, L., Biologically derived water soluble conducting polyaniline, Synth.Met., 1999, vol. 101, p. 738.
  4. Kausaite, A. and Ramanaviciene, A., polyaniline synthesis catalysed by glucose oxidase, Polymer, 2009, vol. 50, no. 8, p. 1846.
  5. Yano, J., Electrochromism of polyaniline Film Incorporating a Red Quinone 1-Amino 4-bromoanthraquinone 2-sulfonate, J. Electrochem. Soc., 1997, vol. 144, p. 477.
  6. Ohtsuka, T., Wakabayashi, T., and Einaga, H., Optical characterization of polypyrrole-polytungstate anion composite films, Synth.Met., 1996, vol. 79, p. 235.
  7. Sung, H. and Paik, W.K., Polypyrrole doped with heteropolytungstate anions, Electrochim. Acta., 1994, vol. 39, p. 645.
  8. Reinolds, J.R., Pyo, M., and Qin, Y.J., Charge and Ion Transport in Poly(pyrrole copper phthalocyanine tetrasulfonate) during Redox Switching, Electrochem. Soc., 1994, vol. 141, p. 35.
  9. Tolgyesi, M., Szues, A. Visy, C., and Novak, M., Redox anion doped polypyrolle films; electrochemical behaviour of polypyrrole prepared in Fe(CN)6, Electrochim. Acta, 1995, vol. 40, p. 1127.
  10. Mazeikiene, R. and Malinauskas, A., Doping of polyaniline by some redox active organic anions, Europ. Polymer J., 2000, vol. 36, p. 1347.
  11. Abalyaeva, V.V. and Efimov, O.N., Synthesis and electrochemical behavior of polyaniline doped by electroactive anions, Russ. J. Electrochem., 2011, vol. 47, p. 1299.
  12. Abalyaeva, V.V. and Efimov, O.N., Regularities of electrochemical behavior of polyaniline doped by electroactive anions, Russ. J. Electrochem., 2011, vol. 47, p. 1307.
  13. Abalyaeva, V.V., Kulikov, A.V., and Efimov, O.N., The aniline complex with the chloromidate anion as a catalyst for the electrochemical synthesis of polyaniline, High-molecular Compounds, 1997, vol. 39, p. 216.
  14. Berman, S.S., Beamish, F.E., and Mcbry de W.A.E., The colorimetric determination of iridium by O-dianisidine, Analyt. Chim. Acta, 1956, vol. 15, p. 363.
  15. Yang, H. and Bard, A.J., The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions, J. Electroanalyt. Chem., 1992, vol. 339, nos. 1–2, p. 423.
  16. Shim, Y-B., Won, M-S., and Park, S-M., Spectroelectrochemical Studies of polyaniline Growth Mechanisms, Electrochem. Soc., 1990, vol. 137, no. 2, p. 538.
  17. Wang, Z.H., Li, C., Scherr, E.M., MacDiarmid, A.G., and Epstein, A.J., Three Dimensionality of “Metallic” States in Conducting Polymers: polyaniline, Phys. Rev. Letters, 1991, vol. 66, no. 13, p. 1745.
  18. Melby, L.R., Harder, R.J., Hertler, W.R., Manler, W., Benson, R.E., and Mochel, W.E., Substituted Quinodimethans. II. Anion-radical Derivatives and Complexes of 7,7,8,8-Tetracyanoquinodimethane, J. Am. Chem. Soc., 1962, vol. 84, p. 3374.
  19. Dominis, A.J., Spinks, G.M., Kane-Maguire, L.A.P., and Wallace, G.G., A de-doping/re-doping study of organic soluble polyaniline, Synth. Met., 2002, vol. 129, no. 2, p. 165.
  20. Abd-Elwahed, A. and Holze, R. Ion size and size memory effects with electropolymerized polyaniline, Synth. Met., 2002, vol. 131, p. 61.
  21. Abd-Elwahed A. and Holze, R., In situ Near-Infrared Spectroelectrochemical Investigation of Redox States of polyaniline during Growth and Doping, Russ. J. Electrochem., 2003, vol. 39, p. 391.
  22. Nekrasov, A.A., Ivanov, V.F., Gribkova, O.I., and Vannikov, A.V., Voltabsorptometric study of “structural memory” effects in polyaniline, Electrochim. Acta, 2005, vol. 50, p. 1605.
  23. Abalyaeva, V.V. and Dremova, N.N., Electrochemical doping of polyaniline with the tetracyanoquinodimethane anion, Russ. J. Electrochem., 2016, vol. 52, p. 746.
  24. Starodub, V.A. and Starodub, T.N., Anion-radical salts and charge-transfer complexes based on tetracyanoquinodimethane and other strong π-electron acceptors, Adv. in Chem., 2014, vol. 83, p. 391.
  25. Hatchett, D.W., Josowicz, M., and Janata, J., Acid Doping of polyaniline: Spectroscopic and Electrochemical Studies, J. Phys. Chem. B., 1999, vol. 103, p. 10992.
  26. Zeng, X.-R. and Ko, T.-M., Structures and properties of chemically reduced polyanilines, Polymer, 1998, vol. 39, p. 1187.
  27. Wey, Y., Hsueh, K.F., and Jang, G-W., A study of leucoemeraldine and effect of redox reactions on molecular weight of chemically prepared polyaniline, Macromolecules, 1994, vol. 27, p. 518.
  28. Bhadra, S., Khastgir, D., Singha, N.K., and Lee, J.H., Progress in preparation, processing and applications of polyaniline,Prog. Polym. Sci., 2009, vol. 34, p. 783.
  29. Abdiryim, T., Xiao-Gang, Z., and Jamal, R.J., Synthesis and characterization of poly(o-toluidine) doped with organic sulfonic acid by solid-state polymerization, Appl. Polym. Sci., 2005, vol. 96, p. 1630.
  30. Lizarraga, L., Andrade, E.M., and Molina1, F.V., Anion exchange influence on the electrochemomechanical properties of polyaniline, Electrochim. Acta, 2007, vol. 53, p. 538.
  31. Zaidi, N.A., Giblin, S.R., Terri, I., and Monkman, A.P., Room temperature magnetic order in an organic magnet derived from polyaniline, Polymer, 2004, vol. 45, p. 5683.
  32. Martin, R. Bryce, M.R., Lay, A.K., Chesney, A., Batsanov, A.,S., Gerson, A., and Merstetter, P., The X-ray crystal structures of 8,9-bis(methylsulfanyl)-acenaphtho[1,2-b][1,4]dithiine and its complexes with 7,7,8,8- tetracyano-p-quinodimethane (TCNQ), 2,5-dibromo-TCNQ and iodine, J. Chem. Soc., Perkin Trans., 1999, vol. 2, p. 755.
  33. Bigoli, F., Deplano, P., Devillanova, F.A., Girlando, A., Lippolis, V., Mercuri, M.-L., Pellinghellia, M.-A., and Troguc, E.-F., New semiconductors obtained by reaction of 4-imidazolline-2-selone derivatives with TCNQ. Characterization and X-ray structure of (C9H12N4Se)2+ \(\left( {{\text{TCNQ}}} \right)_{3}^{{2 - }},\)J. Mater. Chem., 1998, vol. 8(5), p. 1145.