Comparison of Approaches in Electrochemical Noise Analysis Using an Air–Hydrogen Fuel Cell

E. A. Astaf’ev E. A. Astaf’ev
Российский электрохимический журнал
Abstract / Full Text

The electrochemical noise of a solid polymer air–hydrogen fuel cell was measured at different loads. Some of the common approaches to data treatment of electrochemical noise were tested. The dependences of the standard deviation and second and third central moments on the constant load current were calculated. The distribution diagrams were constructed. The spectral power density was calculated by Fourier transform using the wavelet transform and also through the standard deviations in the given frequency band. The data calculated by different methods were in good agreement.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    E. A. Astaf’ev

  1. Cruz-Manzo, S., Chen, R., and Rama, P., Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy, Int. J. Hydrogen Energy, 2013, vol. 38, p. 1702. https://doi.org/10.1016/j.ijhydene.2012.08.141
  2. Bao, C. and Bessler, W.G., Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis, J. Power Sources, 2015, vol. 278, p. 675. https://doi.org/10.1016/j.jpowsour.2014.12.045
  3. Astaf'ev, E.A., Lyskov, N.V., and Gerasimova, E.V., Electrochemical study of polymer electrolyte fuel cell cathodes, Al’tern. Energ. Ekol., 2009, no. 8, p. 93.
  4. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen–air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. https://doi.org/10.20964/2017.03.56
  5. Rubio, M.A., Bethune, K., Urquia, A., and St-Pierre, J., Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise, Int. J. Hydrogen Energy, 2016, vol. 41, p. 14991. https://doi.org/10.1016/j.ijhydene.2016.05.292
  6. Legros, B., Thivel, P.-X., Bultel, Y., and Nogueira, R.P., First results on PEMFC diagnosis by electrochemical noise, Electrochem. Commun., 2011, vol. 13, p. 1514. https://doi.org/10.1016/j.elecom.2011.10.007
  7. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803. https://doi.org/10.1007/S10008-015-2855-2
  8. Astafev, E.A., The instrument for electrochemical noise measurement of chemical power sources, Rev. Sci. Instrum., 2019. https://doi.org/10.1063/1.5079613
  9. Astafev, E.A. and Ukshe, A.E., Peculiarities of hardware for electrochemical noise measurement in chemical power sources, IEEE Instrum. Meas., 2019. https://doi.org/10.1109/TIM.2018.2889232
  10. Astaf’ev, E.A., Electrochemical noise measurement of polymer membrane fuel cell under load, Russ. J. Electrochem., 2018, vol. 54, no. 6, p. 554. https://doi.org/10.1134/S1023193518060034
  11. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018, vol. 22, p. 1839. https://doi.org/10.1007/s10008-018-3892-4
  12. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., The model of electrochemical noise of a hydrogen-air fuel cell, J. Electrochem. Soc., 2018, vol. 165, p. F604. https://doi.org/10.1149/2.0251809jes
  13. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise, J. Power Sources, 2017, vol. 342, p. 553. https://doi.org/10.1016/j.jpowsour.2016.12.053
  14. Denisov, E., Evdokimov, Yu.K., Martemianov, S., Thomas, A., and Adiutantov, N., Electrochemical noise as a diagnostic tool for PEMFC, Fuel Cells, 2017, vol. 17, p. 225. https://doi.org/10.1002/fuce.201600077
  15. Cottis, R.A., Homborg, A.M., and Mol, J.M.C., The relationship between spectral and wavelet techniques for noise analysis, Electrochim. Acta, 2016, vol. 202, p. 277. https://doi.org/10.1016/j.electacta.2015.11.148
  16. Grafova, I.B. and Grafov, B.M., Meixner wavelet transform: A tool for studying stationary discrete-time stochastic processes, Russ. J. Electrochem., 2003, vol. 39, p. 130. https://doi.org/10.1023/A:1022348606667
  17. Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647. https://doi.org/10.1016/0013-4686(71)85075-2
  18. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya, 1974, vol. 10, p. 3.
  19. Bertocci, U., Huet F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337. https://doi.org/10.5006/1.3287684
  20. Bartlett, M.S., Smoothing periodograms from time-series with continuous spectra, Nature, 1948, vol. 161, p. 686.
  21. Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018. https://doi.org/10.1007/s10008-018-4067-z
  22. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 1928. vol. 32, p. 110.
  23. Sanchez-Amaya, J.M., Cottis, R.A., and Botana, F.J., Shot noise and statistical parameters for the estimation of corrosion mechanisms, Corros. Sci., 2005, vol. 47, p. 3280. https://doi.org/10.1016/j.corsci.2005.05.047
  24. Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, p. 265. https://doi.org/10.5006/1.3290350
  25. Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2016, vol. 52, no. 12, p. 1122. https://doi.org/10.1134/S1023193516120089
  26. Grafov, B.M., Dobrovolskii, Yu.A., Klyuev, A.L., Ukshe, A.E., Davydov, A.D., and Astaf’ev, E.A., Median Chebyshev spectroscopy of electrochemical noise, J. Solid State Electrochem., 2017, vol. 21, p. 915. https://doi.org/10.1007/s10008-016-3395-0
  27. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., vol. 51, p. 503. https://doi.org/10.1134/S1023193515060063
  28. Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu.A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., vol. 52, p. 1001. https://doi.org/10.1134/S1023193516100062
  29. Timashev, S.F. and Polyakov, Yu.S., Review of Flicker noise spectroscopy in electrochemistry, Fluct. Noise Lett., 2007, vol. 7, p. R15. https://doi.org/10.1142/S0219477507003829
  30. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell, J. Solid State Electrochem., 2018, vol. 22, p. 1649. https://doi.org/10.1007/s10008-017-3848-0
  31. Niroumand, A.M., Mérida, W., Eikerling, M., and Saif, M., Pressure-voltage oscillations as a diagnostic tool for PEFC cathodes, Electrochem. Commun., 2010, vol. 12, p. 122. https://doi.org/10.1016/j.elecom.2009.11.003
  32. Astafev, E.A., Frequency characteristics of hydrogen-air fuel cell electrochemical noise, Fuel Cells, 2018, vol. 18, p. 755. https://doi.org/10.1002/fuce.201800102