One-Stage Plasma-Assisted Electrochemical Synthesis of Cobalt-Containing Catalysts for Oxygen Reduction

A. G. Krivenko A. G. Krivenko , R. A. Manzhos R. A. Manzhos , A. S. Kotkin A. S. Kotkin , V. K. Kochergin V. K. Kochergin
Российский электрохимический журнал
Abstract / Full Text


t—The potentialities of single-stage plasma-assisted electrochemical synthesis of few-layer graphene structures with high electrocatalytic characteristics toward the oxygen reduction reaction are demonstrated.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    A. G. Krivenko, R. A. Manzhos & A. S. Kotkin

  • Department of Chemistry, Moscow State University, 119992, Moscow, Russia

    V. K. Kochergin

  1. Shao, M., Chang, Q., Dodelet, J.P., and Chenitz, R., Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev., 2016, vol. 116, p. 3594. https://doi.org/10.1021/acs.chemrev.5b00462
  2. Jia, Q., Ramaswamy, N., Tylus, U., Strickland, K., Li, J., Serov, A., Artyushkova, K., Atanassov, P., Anibal, J., Gumeci, C., Calabrese Barton, S., Sougrati, M.T., Jaouen, F., Halevi, B., and Mukerjee, S., Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid, Nano Energy, 2016, vol. 29, p. 65. https://doi.org/10.1016/j.nanoen.2016.03.025
  3. Tarasevich, M.R. and Davydova, E.S., Nonplatinum cathodic catalysts for fuel cells with alkaline electrolyte (Review), Russ. J. Electrochem., 2016, vol. 52, p. 193. https://doi.org/10.1134/S1023193516030113
  4. Shah, A., Zahid, A., Subhan, H., Munir, A., Iftikhar, F.J., and Akbar, M., Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices, Sustain. Energ. Fuels, 2018, vol. 2, p. 1398. https://doi.org/10.1039/C7SE00548B
  5. Osmieri, L., Pezzolato, L., and Specchia, S., Recent trends on the application of PGM-free catalysts at the cathode of anion exchange membrane fuel cells, Curr. Opin. Electrochem., 2018, vol. 9, p. 240. https://doi.org/10.1016/j.coelec.2018.05.011
  6. Belkin, P.N., Yerokhin, A., and Kusmanov, S.A., Plasma electrolytic saturation of steels with nitrogen and carbon, Surf. Coat. Technol., 2016, vol. 307, p. 1194. https://doi.org/10.1016/j.surfcoat.2016.06.027
  7. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., Plasma-assisted electrochemical exfoliation of graphite in the pulsed mode, High Energ. Chem., 2018, vol. 52, p. 272. https://doi.org/10.1134/S0018143918030074
  8. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., Pulse generator for electrochemical exfoliation of graphite, Pribory i Tekhnika Eksperimenta, 2018, no. 4, p. 158. https://doi.org/10.1134/S0032816218040237
  9. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.
  10. Lide, D.R., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 2001.
  11. Gardner, S.D., Singamsetty, C.S.K., Booth, G.L., and He, G.-R., Surface characterization of carbon-fibers using angle-resolved XPS and ISS, Carbon, 1995, vol. 33, p. 587. https://doi.org/10.1016/0008-6223(94)00144-O