Application of the dissipation theorem to turbulent flow and mass transfer in a pipe

John Newman John Newman
Российский электрохимический журнал
Abstract / Full Text

The dissipation theorem is applied to turbulent pipe flow. The eddy-viscosity profiles can be made to agree with some in the literature in the sense that the eddy viscosity starts at zero on the solid pipe wall, rises to a maximum, and declines again toward the center line. A relationship between the volumetric dissipation and the eddy viscosity is derived by means of an energy balance on a core of fluid of radius r. The question of what exponent to use on the radius in another governing equation is clarified, thereby giving better agreement with experimental data than other values tried. Negative values of the eddy viscosity can be obtained in some regions of the flow field, such as near the center line, and it is suggested that these can be eliminated by slight modification of the decay term. Better agreement with the shapes of friction-factor and mass-transfer curves could be achieved by further (empirical) modification of the stress dependence of parameters in the model.

Author information
  • Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 94720-1462, California, USA

    John Newman

  1. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1962.
  2. Fuller, T.F. and Newman, J., Convective diffusion near a consolute point, Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 347–351.
  3. Newman, J., Retardation of falling drops, Chem. Eng. Sci., 1967, vol. 22, pp. 83–85.
  4. Albery, W.J. and Bruckenstein, S., Ring-disc electrodes, Part 2: Theoretical and experimental collection efficiencies, Trans. Faraday Soc., 1966. vol. 62, pp. 1920–1931.
  5. Smyrl, W.H. and Newman, J., Ring-disk and sectioned disk electrodes, J. Electrochem. Soc., 1972, vol. 119, pp. 212–219.
  6. Newman, J., Schmidt number correction for the rotating disk, J. Phys. Chem., 1966, vol. 70, pp. 1327–1328.
  7. Newman, J., Effect of ionic migration on limiting currents, Ind. Eng. Chem. Fundamentals, 1966, vol. 5, pp. 525–529.
  8. Newman, J., The Koutecký correction to the Ilkovic equation, J. Electroanal. Chem., 1967, vol. 15, pp. 309–312.
  9. Lévêque, M.A., Les Lois de la transmission de Chaleur par convection, Annales des Mines, Memoires, Ser. 12, 1928, vol. 13, pp. 201–299, 305–362, 381–415.
  10. Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Philosophical Soc., 1856, vol. 9, part II, pp. 8–106.
  11. Whitehead, A.N., On the motion of viscous incompressible fluids, Quarterly J. Pure Appl. Math., 1889, vol. 23, pp. 78–93.
  12. Whitehead, A.N., Second approximations to viscous fluid motion, Quarterly J. Pure Appl. Math., 1889, vol. 23, pp. 143–152.
  13. Oseen, C.W., Über die Stokes’sche Formel und über eine verwandte Aufgabe in der Hydrodynamik, Arkiv för Matematik, Astronomi och Fysik, 1911, vol. 6, no. 29, pp. 1–20.
  14. Oseen, C.W., Über den Gültigkeitsbereich der Stokesschen Widerstandsformel, Arkiv för Matematik, Astronomi och Fysik, 1913, vol. 9, no. 16, pp. 1–15.
  15. Kaplun Saul and Lagerstrom, P.A., Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mechan., 1957, vol. 6, pp. 585–593.
  16. Kaplun Saul, Low Reynolds numbr flow past a circular cylinder, J. Math. Mechan., 1957, vol. 6, pp. 595–603.
  17. Proudman, I. and Pearson, J.R.A., Expansions at small Reynolds numbers for flow past a sphere and a circular cylinder, J. Fluid Mechan., 1957, vol. 2, pp. 237–262.
  18. Lighthill, M.J., Contributions to the theory of heat transfer through a laminar boundary layer, Proc. Royal Soc., 1950, vol. A202, pp. 359–377.
  19. Acrivos, A., Solution of the laminar boundary layer energy equation at high Prandtl numbers, Phys. Fluids, 1960, vol. 3, pp. 657–658.
  20. Newman, J., Theoretical analysis of turbulent mass transfer with rotating cylinders, J. Electrochem. Soc., 2016, vol. 163, pp. E191–E198.
  21. Schlichting, Hermann, Boundary-Layer Theory (translated by J. Kestin), 7th ed., New York: McGraw-Hill Book Company, 1979, a. p. 609.
  22. Batchelor, G., The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press, 1953.
  23. Newman, J., Chemical Engineering 250 Transport Notes, Berkeley: University of California, 2003.
  24. Newman, J. and Thomas-Alyea, K., Electrochemical Systems, Hoboken, New Jersey: John Wiley and Sons, Inc., 2004, Chapter15.
  25. Sieder, E.N. and Tate, G.E., Heat transfer and pressure drop of liquids in tubes, Ind. Eng. Chem., 1936, vol. 28, pp. 1429–1435.
  26. Levich, B., The theory of concentration polarization, Acta Physicochimica U.R.S.S., 1942, vol. 17, pp. 257–307.
  27. Levich, B., The theory of concentration polarization, Acta Physicochimica U.R.S.S., 1944, vol. 19, pp. 117–132.
  28. Davis Watson Hubbard, Mass Transfer in Turbulent Flow at High Schmidt Numbers, Dissertation, Madison: University of Wisconsin, 1964.
  29. Skurygin, E.F., Vorotyntsev, M.A., and Martem’yanov, S.A., Space-time fluctuations of a passive impurity concentration within the diffusion boundary layer in the turbulent flow of a fluid, J. Electroanal. Chem., 1989, vol. 259, pp. 285–293.