Synthesis and Investigation of Electrode–Diaphragm Assemblies for Alkaline Water Electrolysis

V. N. Kuleshov V. N. Kuleshov , N. V. Kuleshov N. V. Kuleshov , S. V. Kurochkin S. V. Kurochkin , O. Yu. Grigor’eva O. Yu. Grigor’eva
Российский электрохимический журнал
Abstract / Full Text

Reduced energy consumption is one of the main requirements for application of water electrolyzers with alkaline electrolyte for small-scale power industry. The energy consumption can be reduced, among other things, by changing the assembling of electrodes and diaphragm material. The phase inversion method, which is used for fabricating the polymer-based porous diaphragms for alkaline water electrolyzers, enabled us to develop an electrode–diaphragm assembly in which the electrodes with the catalytic layers and the diaphragm material comprise a single unit. The electrolysis cells with the electrode–diaphragm assemblies of various compositions and the cells of conventional “zero-gap” design are studied.

Author information
  • National Research University “Moscow Power Engineering Institute”, Moscow, Russia

    V. N. Kuleshov, N. V. Kuleshov, S. V. Kurochkin & O. Yu. Grigor’eva

  1. Kuleshov, N.V., Kuleshov, V.N., Dovbysh, S.A., Grigoriev, S.A., Kurochkin, S.V., and Millet, P., Development and performances of a 0.5 kW high-pressure alkaline water electrolyser, Int. J. Hydrogen Energy, 2019, vol. 44, p. 29441.
  2. Kuleshov, N.V., Dovbysh, S.A., Kurochkin, S.V., and Slavnov, Yu.A., High-pressure alkaline water electrolyzer for renewable energy storage systems, Proc. 3rd Conf. “Renewable Energies, Power Systems and Green Inclusive Economy (REPS-GIE),” IEEE, Casablanca, Morocco, 2018. https://doi.org/10.1109/REPSGIE.2018.8488805
  3. Vermeiren, Ph., Moreels, J.P., Claes, A., and Beckers, H., Electrode diaphragm electrode assembly for alkaline water electrolysers, Int. J. Hydrogen Energy, 2009, vol. 34, p. 9305.
  4. Kuleshov, V.N., Kuleshov, N.V., Grigoriev, S.A., Udris, E.Y., Millet, P., and Grigoriev, A.S., Development and characterization of new nickel coatings for application in alkaline water electrolysis, Int. J. Hydrogen Energy, 2016, vol. 41, p. 36.
  5. Kuleshov, N.V., Udris, E.Y., and Kuleshov, V.N., RF Patent 2534014, Method for manufacturing electrodes with porous nickel coating for alkaline water electrolyzers, 2014.
  6. Kuleshov, V.N. Kuleshov, N.V., Dovbysh, S.A., Udris, E.Y., Slavnov, Y.A., Grigoriev, S.A., and Yashtulov, N.A., High-performance composite cathodes for alkaline electrolysis of water, Russ. J. Appl. Chem., 2017, vol. 90, p. 389.
  7. Kuleshov, N.V., Terent’ev, A.A., and Kuleshov, V.N., RF Patent 2322460, Method for manufacturing a membrane for water electrolysis, 2008.
  8. Kuleshov, N.V., Kuleshov, V.N., Dovbysh, S.A., Kurochkin, S.V., Udris, E.Y., and Slavnov, Y.A., Polymeric composite diaphragms for water electrolysis with alkaline electrolyte, Russ. J. Appl. Chem., 2016, vol. 89, p. 600.
  9. Kuleshov, N.V., Polysulfone-based polymeric diaphragms for electrochemical devices with alkaline electrolyte, Russ. J. Appl. Chem., 2018, vol. 91, p. 928.
  10. Kuleshov, N.V., Kuleshov, V.N., and Dovbysh, S.A., RF Patent 2562457, Method for manufacturing electrode–diaphragm assembly for alkaline water electrolyzers, 2015.
  11. Kuleshov, V.N., Kuleshov, N.V., Kurochkin, S.V., Fedotov, A.A., Sleptsova, E.E., Blinov, D.V., Gavriluk, A.A., and Zhmurko, I.E., Water electrolyzer for renewable energy systems, E3S Web of Conferences, 2021, vol. 289. https://doi.org/10.1051/e3sconf/202128905004