Examples



mdbootstrap.com



 
Статья
2020

Stabilization of unusual metal oxidation state +4 in the iron, cobalt, nickel, and copper complexes with trans-di[benzo]porphyrazine and two fluoride anions: a DFT quantum chemical analysis


O. V. MikhailovO. V. Mikhailov, D. V. ChachkovD. V. Chachkov
Российский химический вестник
https://doi.org/10.1007/s11172-020-2846-z
Abstract / Full Text

Molecular structure calculations of heteroligand (6666)macrotetracyclic metal (MIV) chelates (M = Fe, Co, Ni, Cu) with trans-di[benzo]porphyrazine as the (N,N,N,N)-donor ligand and two F anions were carried out at the OPBE/TZVP level of density functional theory. The key bond lengths, bond angles, and non-bond angles in the complexes were determined and corresponding standard enthalpies, entropies, and Gibbs energies of formation were calculated. All complexes have slightly distorted tetrahedral structures. The complex-forming agent MIV lies in the plane formed by the donor nitrogen atoms. The metal—nitrogen bonds are usually pair-wise equal. The six-membered metal chelate rings in the complexes are identical to one another from the standpoint of both the sum and set of the bond angles.

Author information
  • Kazan National Research Technological University, 68 ul. Karla Marksa, 420015, Kazan, Russian FederationO. V. Mikhailov
  • Kazan Department of Joint Supercomputer Center of the Russian Academy of Sciences - Branch of the Federal State Institution, “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”, 2/31 ul. Lobachevskogo, 420111, Kazan, Russian FederationD. V. Chachkov
References
  1. K. Kasuda, M. Tsutsui, Coord. Chem. Rev., 1980, 32, 67.
  2. A. L. Thomas, Phthalocyanines. Research and Applications, CRC Press, Boston, 1990.
  3. W. Sliva, B. Mianovska, Transit. Met. Chem., 2000, 25, 491.
  4. G. M. Mamardashvili, N. Z. Mamardashvili, O. I. Koifman, Russ. Chem. Rev., 2008, 77, 59.
  5. T. N. Lomova, Aksial'no koordinirovannye metalloporfiriny v nauke i praktike [Axially Coordinate Metalloporphyrins in Scicence and Practice], URSS-KRASAND, Moscow, 2018, 700 pp. (in Russian).
  6. K. Okada, A. Sumida, R. Inagaki, M. Inamo, Inorg. Chim. Acta, 2012, 392, 473.
  7. C. Colomban, E. V. Kudric, P. Afanasiev, A. B. Sorokin, J.Am. Chem. Soc, 2014, 136, 11321.
  8. J. W. Buchler, K. Rohbock, Inorg. Nucl. Chem. Lett., 1972, 8, 1073.
  9. R. Guilard, P. Richard, M. El Borai, E. Laviron, J. Chem. Soc, Chem. Commun., 1980, 516.
  10. C. Lecomte, J. Protas, P. Richard, J.-M. Barbe, R. Guilard, J. Chem. Soc, Dalton Trans., 1982, 247.
  11. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2013, 58, 174.
  12. D. V. Chachkov, O. V. Mikhailov, Macroheterocycles, 2009, 2, 271.
  13. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2015, 60, 1117.
  14. O. V. Mikhailov, D. V. Chachkov, Russ. J. Inorg. Chem., 2015, 60, 1354.
  15. O. V. Mikhailov, D. V. Chachkov, Macroheterocycles, 2016, 9, 268.
  16. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571.
  17. A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.
  18. W.-M. Hoe, A. Cohen, N. C. Handy, Chem. Phys. Left., 2001, 341, 319.
  19. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Left., 1996, 77, 3865.
  20. H. Paulsen, L. Duelund, H. Winkler, H. Toftlund, A. X. Trautwein, Inorg. Chem., 2001, 40, 2201; DOI: 10.1021/ic000954q.
  21. M. Swart, A. R. Groenhof, A. W. Ehlers, K. Lammertsma, J. Phys. Chem. A., 2004, 108, 5479.
  22. M. Swart, A. W. Ehlers, K. Lammertsma, Mol. Phys., 2004, 102, 2467.
  23. M. Swart, Inorg. Chim. Acta, 2007, 360, 179.
  24. O. V. Mikhailov, Struct. Chem., 2018, 29, 777.
  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Kiene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakr-zewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.
  26. J. W. Ochterski, Thermochemistry in Gaussian, Gaussian, Inc., Wallingford CT, 2000.