Increasing the Electrochemical Activity of the Interface Pr1.95La0.05CuO4/Porous Ce0.9Gd0.1O1.95 Layer by Infiltrating Pr6O11

N. V. Lyskov N. V. Lyskov , M. Z. Galin M. Z. Galin , K. S. Napol’skii K. S. Napol’skii , I. V. Roslyakov I. V. Roslyakov , G. N. Mazo G. N. Mazo
Российский электрохимический журнал
Abstract / Full Text

The electrochemical properties are studied for the electrode with multilayered structure involving the current-collecting Pr1.95La0.05CuO4 layer (PLCO) and the porous Ce0.9Gd0.1O1.95 (GDC) layer modified by Pr6O11. The ratio of initial components (GDC/pore-forming agent) used in formation of the porous GDC layer is optimized in order to prepare the electrode with the high electrochemical activity in the oxygen reduction reaction. It is shown that the transition to the multilayered structure makes it possible to decrease the polarization resistance (Rη) of the PLCO-based electrode by one order of magnitude as compared with the original unmodified electrode and reach Rη = 0.16 Ω cm2 at 650°С in air. Based on the results of a systematic study aimed at the development of the step-by-step procedure of formation of the multilayered structure of the PLCO-based cathode for solid-oxide fuel cells (SOFC), it is shown that the proposed approach allows synthesizing the SOFC cathodic layers suitable of functioning in the intermediate temperature interval of 500–800°С and allowing the high electrochemical activity of the electrode in the oxygen reduction reaction to be reached.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    N. V. Lyskov & M. Z. Galin

  • Moscow State University, Faculty of Chemistry, Leninskie Gory, 119992, Moscow, Russia

    K. S. Napol’skii, I. V. Roslyakov & G. N. Mazo

  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

    I. V. Roslyakov

  1. Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, vol. 8, p. 1800120.
  2. Cassidy, M., Trends in the processing and manufacture of solid oxide fuel cells, Wiley Interdiscip. Rev.: Energy Environ., 2017. vol. 6, p. e248.
  3. Abdalla, A.M., Hossain, S., Azad, A.T., Petra, P.M.I., Begum, F., Eriksson, S.G., and Azad, A.K., Nanomaterials for solid oxide fuel cells: a review, Renewable Sustainable Energy Rev., 2018, vol. 82, p. 353.
  4. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602.
  5. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Annu. Rev. Mater. Res., 2014, vol. 44, p. 365.
  6. Chrzan, A., Karczewski, J., Gazda, M., Szymczewska, D., and Jasinski, P., La0.6Sr0.4Co0.2Fe0.8O3 – δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone, J. Eur. Ceram. Soc., 2017, vol. 37, p. 3559.
  7. Giuliano, A., Carpanese, M.P., Clematis, D., Boaro, M., Pappacena, A., Deganello, F., Liotta, L.F., and Barbuccia, A., Infiltration, overpotential and ageing effects on cathodes for solid oxide fuel cells: La0.6Sr0.4Co0.2Fe0.8O3 – δ versus Ba0.5Sr0.5Co0.8Fe0.2O3 – δ, J. Electrochem. Soc., 2017, vol. 164, p. F3114.
  8. Ding, D., Li, X., Lai, S.Y., Gerdes, K., and Liu, M., Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 2014, vol. 7, p. 552.
  9. Yoon, K.J., Biswas, M., Kim, H., Park, M., Hong, J., Kim, H., Son, J., Lee, J., Kim, B., and Lee, H., Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells, Nano Energy, 2017, vol. 36, p. 9.
  10. Chrzan, A., Ovtar, S., Jasinski, P., Chen, M., and Hauch, A., High performance LaNi1 – xCoxO3 – δ (x = 0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells, J. Power Sources, 2017, vol. 353, p. 67.
  11. Nicollet, C., Flura, A., Vibhu, V., Rougier, A., Bassat, J.M., and Grenier, J.C., La2NiO4 + δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling, J. Power Sources, 2015, vol. 294, p. 473.
  12. Railsback, J.G., Gao, Z, and Barnett, S.A., Oxygen electrode characteristics of Pr2NiO4 + δ-infiltrated porous (La0.9Sr0.1)(Ga0.8Mg0.2)O3 – δ, Solid State Ionics, 2015, vol. 274, p. 134.
  13. Taguchi, H., Chiba, R., Komatsu, T., Orui, H., Watanabe, K., and Hayashi, K., LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2, J. Power Sources, 2013, vol. 241, p. 768.
  14. Vshivkova, A.I. and Gorelov, V.P., Activation of oxygen reaction by praseodymium oxide film on platinum electrode in contact with YSZ electrolyte, Russ. J. Electrochem., 2016, vol. 52. p. 488.
  15. Ding, X., Zhu, W., Hua, G., Li, J., and Wu, Z., Enhanced oxygen reduction activity on surface-decorated perovskite La0.6Ni0.4FeO3 cathode for solid oxide fuel cells, Electrochim. Acta, 2015, vol. 163, p. 204.
  16. Navarrete, L., Solis, C., and Serra, J.M., Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization, J. Mater. Chem. A, 2015, vol. 3, p. 16440.
  17. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC, Int. J. Hydrogen Energy, 2012, vol. 37, p. 18357.
  18. Sun, C., Li, Q., Sun, L., Zhao, H., and Huo, L., Characterization and electrochemical performances of Pr2CuO4 as a cathode material for intermediate temperature solid oxide fuel cells, Mat. Res. Bull, 2014, vol. 53, p. 65.
  19. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compds., 2014, vol. 605, p. 89.
  20. Mazo, G.N., Kazakov, S.M., Kolchina, L.M., Istomin, S.Ya., Antipov, E.V., Lyskov, N.V., Galin, M.Z., Leonova, L.S., Fedotov, Yu.S., Bredikhin, S.I., Liu, Yi, Svensson, G., and Shen, Z., Influence of structural arrangement of R2O2 slabs of layered cuprates on high-temperature properties important for application in IT-SOFC, Solid State Ionics, 2014, vol. 257, p. 67.
  21. Kolchina, L.M., Lyskov, N.V., Kazakov, S.M., Mazo, G.N., and Antipov, E.V., Drastic change of electrical conductivity in Pr2CuO4 by isovalent La doping, RSC Adv., 2015, vol. 5, p. 91993.
  22. Kolchina, L.M., Lyskov, N.V., Kuznetsov, A.N., Kazakov, S.M., Galin, M.Z., Meledin, A., Abakumov, A.M., Bredikhin, S.I., Mazo, G.N., and Antipov, E.V., Evaluation of Ce-doped Pr2CuO4 for potential application as a cathode material for solid oxide fuel cells, RSC Adv., 2016, vol. 6, p. 101029.
  23. Lyskov, N.V., Kolchina, L.M., Galin, M.Z., and Mazo, G.N., Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells, Solid State Ionics, 2018, vol. 319, p. 156–161.
  24. Khandale, A.P., Pahune, B.S., Bhoga, S.S., Kumar, R.V., and Tomov, R., Development of Pr2 – xSrxCuO4 ± δ mixed ion-electron conducting system as cathode for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 2019, vol. 44, p. 15417.
  25. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics, 2000, vol. 132, p. 227.
  26. Jiang, S. and Wang, W., Fabrication and performance of GDC-impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells, J. Electrochem. Soc., 2005, vol. 152, p. A1398.
  27. Zhao, F., Peng, R., and Xia, C., LSC-based electrode with high durability for IT-SOFCs, Fuel Cells Bull., 2008, vol. 2008, p. 12.
  28. Ren, Y., Cheng, Y., Gorte, R.J., and Huang, K., Toward stabilizing Co3O4 nanoparticles as an oxygen reduction reaction catalyst for intermediate-temperature SOFCs, J. Electrochem. Soc., 2017, vol. 164, p. F3001.
  29. Shah, M. and Barnett, S.A. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3 – δ into Gd-Doped Ceria, Solid State Ionics, 2008, vol. 179, p. 2059.
  30. Nicholas, J.D. and Barnett, S.A., Measurements and modeling of Sm0.5Sr0.5CoO3 – x–Ce0.9Gd0.1O1.95 SOFC cathodes produced using infiltrate solution additives, J. Electrochem. Soc., 2010, vol. 157, p. B536.
  31. Nicollet, C., Flura, A., Vibhu, V., Fourcade, S., Rougier, A., Bassat, J.M., and Grenier, J.C., Preparation and characterization of Pr2NiO4 + δ infiltrated into Gd-doped ceria as SOFC cathode, J. Solid State Electrochem., 2016, vol. 20, p. 2071.