Effect of phosphate doping on electric properties and chemical stability of Ba4Ca2Nb2O11 protonic conductor

K. G. Belova K. G. Belova , A. V. Obrubova A. V. Obrubova , I. E. Animitsa I. E. Animitsa
Российский электрохимический журнал
Abstract / Full Text

Conductivity of perovskite phosphate–substituted solid solutions of Ba4Ca2Nb2 x P x O11 (0.0 ≤ x ≤ 0.5) was studied as a function of temperature, partial pressure of oxygen and water vapors. It is proved that the studied systems are protonic conductors at the temperatures below 600°C in the atmosphere with elevated content of water vapors (pH2O = 1.92 × 10–2 atm). Introduction of the tetrahedral [PO4] group in the complex oxide matrix of Ba4Ca2Nb2O11 results in an increase in the oxygen–ionic (dry air, pH2O = 1.91 × 10–4 atm) and protonic conductivities (wet air, pH2O = 1.92 × 10–2 atm). Is it found that the doping causes a considerable increase in chemical stability of phases with respect to carbon dioxide.

Author information
  • Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, 620002, Russia

    K. G. Belova, A. V. Obrubova & I. E. Animitsa

  1. Shin, J.F. and Slater, P.R., J. Solid State, 2011, p. 22.
  2. Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A., and Tsiakaras, P., Prog. Mater Sci., 2014, vol. 60, p. 72.
  3. Colomban, P., Romain, F., Neiman, A., and Animitsa, I., Solid State Ionics, 2001, vol. 145, p. 339.
  4. Malavasi, L., Fisher, C.A.J., and Islam, M.S., Chem. Soc. Rev., 2010, vol. 39, p. 4370.
  5. Perovskites: Structure, Properties and Uses, Borowski, M., Ed., New York: Nova Science Publishers. Inc., 2010, pp. 501–524.
  6. Animitsa, I.E., Russ. J. Electrochem., 2009, vol. 45, p. 668.
  7. Animitsa, I.E., Protonnyi transport v slozhnykh oksidakh (Protonic Transport in Complex Oxides), Yekaterinburg Izd-vo Ural. Un-ta, 2014.
  8. Shin, J.F., Hussey, L., Orera, A., and Slater, P.R., Chem. Commun., 2010, vol. 46, p. 4613.
  9. Shin, J.F., Joubel, K., Apperley, D.C., and Slater, P.R., Dalton Trans., 2012, vol. 41, p. 261.
  10. Kochetova, N.A., Cand. Sci. (Chem.) Dissertation, Yekaterinburg UrFU, 2006.
  11. Animitsa, I.E. and Kochetova, N.A., Chim. Techno Acta, 2016, vol. 3, no. 1, p. 5.
  12. Ashok, A., Kochetova, N., Norby, T., and Olsen, A., Solid State Ionics, 2008, vol. 179, p. 1858.
  13. Animitsa, I., Neiman, A., Kochetova, N., Korona, D., and Sharafutdinov, A., Solid State Ionics, 2006, vol. 177, p. 2363.
  14. Kochetova, N.A., Animitsa, I.E., and Neiman, A.Ya., Phys. Chem. Solids, 2009, vol. 83, no. 2, p. 203.
  15. Shannon, R.D., Acta Crystallogr., Sect. A: Found. Crystallogr., 1976, vol. 32, p. 155.
  16. Munch, W., Seifert, G., Kreuer, K.D., and Maier, J., Solid State Ionics, 1996, vols. 86–88, p. 647.
  17. Smyth, D.M., Solid State Ionics, 2000, vol. 129, p. 5.
  18. Allred, A.L. and Rochow, E.G., J. Inorg. Nucl. Chem., 1958, vol. 5, p. 264.
  19. Voronov, V.N., Ionnaya podvizhnost' i svoistva soedinenii ABX3 tipa perovskita: Preprint Nomer 000F (Ionic Mobility and Properties of ABX3 Compounds of Perovskite Type), Krasnoyarsk In-t fiziki SORAN, 2006.
  20. Kreuer, K.D., Annu. Rev. Mater. Res., 2003, vol. 33, p. 333.