Examples



mdbootstrap.com



 
Статья
2019

Study of Transport Properties and Microstructure of Lithium-Conducting Li0.33La0.56TiO3 Ceramic


G. B. KunshinaG. B. Kunshina, O. B. ShcherbinaO. B. Shcherbina, V. I. IvanenkoV. I. Ivanenko
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219100045
Abstract / Full Text

Methods of X-ray diffraction analysis, impedance spectroscopy, and scanning electron microscopy were used to examine how thermal treatment modes affect the transport properties and microstructure of a lithium-conducting oxide ceramic of composition Li0.33La0.56TiO3, produced from powders synthesized by the sol-gel method. It was found that the cubic structure of Li0.33La0.56TiO3 can be stabilized as a result of quenching after the high-temperature of sintering at 1150°C. The conditions were determined in which Li0.33La0.56TiO3 ceramic samples can be obtained with bulk ion conductivity of ∼1 × 10−3 S cm−1 at 20°C, which corresponds to the maximum values for the ceramic based on lithium-lanthanum titanate.

Author information
  • Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Resources, Kola Scientific Center, Russian Academy of Sciences, Apatity, Murmansk oblast, 184209, RussiaG. B. Kunshina, O. B. Shcherbina & V. I. Ivanenko
References
  1. Sun, Y., Guan, P., Liu, Y., Xu, H., Li, S., and Chu, D., Crit. Rev. Solid State, 2019, vol. 44, no. 4, pp. 265–282. https://doi.org/10.1080/10408436.2018.1485551
  2. Inaguma, Y. and Nakashima, M., J. Power Sources, 2013, vol. 228, pp. 250–255. https://doi.org/10.1016/j.jpowsour.2012.11.098
  3. Wolfenstine, J., Allen, J.L., Read, J., Sakamoto, J., and Gonalez-Doncel, G., J. Power Sources, 2010, vol. 195, pp. 4124–4128. https://doi.org/10.1016/j.jpowsour.2009.12.109
  4. Belous, A.G., Kolbasov, G.Y., Boldyrev, E.I., and Kovalenko, L.L., Russ. J. Electrochem., 2015, vol. 51, no. 12, pp. 1162–1167. https://doi.org/10.1134/S1023193515120022.
  5. Lu, D.-L., Dai, G.-Z., Yao, Y.-B., Tao, T., Liang, B., and Lu, S.-G., J. Inorg. Mater., 2018, vol. 33, no. 10, pp. 1077–1082. https://doi.org/10.15541/jim20180049
  6. Bohnke, O., Solid State Ionics, 2008, vol. 179, pp. 9–15. https://doi.org/10.1016/j.ssi.2007.12.022
  7. Zhang, Q., Schmidt, N., Lan, J., Kim, W., and Cao, G., Chem. Commun., 2014, vol. 50, pp. 5593–5596. https://doi.org/10.1039/c4cc00335g
  8. Cao, C., Li, Z.-B., Wang, X.-L., Zhao X.-B., and Han, W.-Q., Front. Energy Res., 2014, vol. 2, A.25, pp. 1–10. https://doi.org/10.3389/fenrg.2014.00025
  9. Zheng, Z., Fang, H., Liu, Z., and Wang, Y., J. Electrochem. Soc., 2015, vol. 162, no. 1, pp. A244–A248. https://doi.org/10.1149/2.0011503jes
  10. Zheng, Z., Fang, H., Yang, F., Liu, Z., and Wang, Y., J. Electrochem. Soc., 2014, vol. 161, no. 4, pp. A473–A479. https://doi.org/10.1149/2.006404jes
  11. Li, J., Wen, Z., Xu, X., and Zhang, J., Ceram. Int., 2007, vol. 33, pp. 1591–1595. https://doi.org/10.1016/j.ceramint.2006.06.008
  12. Kobylyanskaya, S.D., Gavrilenko, O.N., and Belous, A.G., Russ. J. Inorg. Chem., 2013, vol. 58, no. 6, pp. 637–643. https://doi.org/10.1134/S0036023613060132
  13. Pham, Q.N., Bohnké, C., Crosnier-Lopez, M.-P., and Bohnké, O., Chem. Mater., 2006, vol. 18, pp. 4385–4392. https://doi.org/10.1021/cm060605f
  14. Kunshina, G.B., Bocharova, I.V., and Ivanenko, VI., Russ. J. Appl. Chem., 2017, vol. 90, no. 3, pp. 374–379. https://doi.org/10.1134/S1070427217030089
  15. Geng, H.X., Mei, A., Dong, C., Lin, Y.H., and Nan, C.W., J. Alloys Compd, 2009, vol. 481, pp. 555–558. https://doi.org/10.1016/j.jallcom.2009.03.038
  16. Wu, J.-F. and Guo, X., Solid State Ionics, 2017, vol. 310, pp. 38–43. https://doi.org/10.1016/j.ssi.2017.08.003
  17. Mei, A., Jiang, Q.-H., Lin, Y.-H., and Nan, C.-W., J. Alloys Compd, 2009, vol. 486, pp. 871–875. https://doi.org/10.1016/j.jallcom.2009.07.091
  18. Gnedenkov, S.V. and Sinebryukhov, S.L., Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2006, no. 5, pp. 6–16.
  19. Kawai, H. and Kuwano, J., J. Electrochem. Soc., 1994, vol. 141, no. 7, pp. L78–79. https://doi.org/10.1149/1.2055043
  20. Geng, H., Lan, J., Mei, A., Lin, Y., and Nan, C.W., Electrochim. Acta, 2011, vol. 56, pp. 3406–3414. https://doi.org/10.1016/j.electacta.2010.06.031
  21. Lineva, B.A., Kobylyanskaya, S.D., Kovalenko, L.L., V’yunov, O.I., and Belous, A.G., Inorg. Mater., 2017, vol. 53, no. 3, pp. 326–332. https://doi.org/10.1134/S0020168517030074
  22. Kunshina, G.B., Bocharova, I.V., and Lokshin, E.P., Inorg. Mater., 2015, vol. 51, no. 4, pp. 369–374. https://doi.org/10.1134/S0020168515040068
  23. Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Russ. J. Electrochem., 2015, vol. 51, no. 6, pp. 551–555. https://doi.org/10.1134/S1023193515060130
  24. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), vol. 1, St. Petersburg: Izd. SPb Gos. Univ., 2000, p. 132.
  25. Kotobuki, M. and Koishi, M., Ceram. Int., 2013, vol. 39, pp. 4645–4649. https://doi.org/10.1016/j.ceramint.2012.10.206
  26. Fortal’nova, E.A., Gavrilenko, O.N., Belous, A.G., and Politova, E.D., Ros. Khim. Zh., 2008, vol. LII, no. 5, pp. 43–51.
  27. Hu, X., Cheng, X., Qin, S., Yan, G., Malzbender, J., Qiang, W., and Huang, B., Ceram. Int., 2018, vol. 44, pp. 1902–1908. https://doi.org/10.1016/j.ceramint.2017.10.129
  28. Trong, L.D., Thao, T.T., and Dinh, N.N., Solid State Ionics, 2015, vol. 278, pp. 228–232. https://doi.org/10.1016/j.ssi.2015.05.027
  29. Choi, H.J., Kim, S.Y., Gong, M.K., Vignesh, H., Aravindan, V., Lee, Y.G., and Lee, Y.-S., J. Alloys Compd., 2017, vol. 729, pp. 338–343. https://doi.org/10.1016/j.jallcom.2017.09.160
  30. Ren, Y., Chen, K., Chen, R., Liu, T., Zhang, Y., and Nan, C.-W., J. Am. Ceram. Soc., 2015, vol. 98, pp. 3603–3623. https://doi.org/10.1111/jace.13844
  31. Xia, W., Xu, B., Duan, H., Tang, X., Guo, Y., Kang, H., Li, H., and Liu, H., J. Am. Ceram. Soc., 2017, vol. 100, no. 7, pp. 2832–2839. https://doi.org/10.1111/jace.14865
  32. Zhang, B., Tan, R., Yang, L., Zheng, J., Zhang, K., Mo, S., Lin, Z., and Pan, F., Energy Storage Mater., 2018, vol. 10, pp. 139–159. https://doi.org/10.1016/j.ensm.2017.08.015