Examples



mdbootstrap.com



 
Статья
2020

Vaporization and Thermodynamic Properties of GdFeO3 and GdCoO3 Complex Oxides


S. I. LopatinS. I. Lopatin, I. A. ZverevaI. A. Zvereva, I. V. ChislovaI. V. Chislova
Российский журнал общей химии
https://doi.org/10.1134/S1070363220080174
Abstract / Full Text

The processes of gadolinium ferrite and gadolinium cobaltite vaporization was studied. It was shown that the predominant components of vapor are atomic iron and cobalt, which are characteristic for the vaporization of individual iron and cobalt oxides, respectively. The activities of iron and cobalt oxides in GdFeO3 and GdCoO3 were determined.

Author information
  • St. Petersburg State University, 199034, St. Petersburg, RussiaS. I. Lopatin, I. A. Zvereva & I. V. Chislova
References
  1. Moure, C. and Peña, O., Prog. Solid State Chem., 2015, vol. 43, no. 4, p. 123. https://doi.org/10.1016/j.progsolidstchem.2015.09.001
  2. Mathur, S., Shen, H., Lecerf, N., Kjekshus, A., Fjellvag, H., and Goya, G.F., Adv. Mater., 2002, vol. 14, no. 19, p. 1405. https://doi.org/10.1002/1521-4095(20021002)14:19<1405::AID-ADMA1405>3.0.CO;2-B
  3. Xu, H., Hu, X., and Zhang, L.Z., Cryst. Growth. Des., 2008, vol. 8, no. 7, p. 2061. https://doi.org/10.1021/cg800014b
  4. Zhao, Z.Y., Wang, X.M., Fan, C., Tao, W., Liu, X.G., Ke, W.P., Zhang, F.B., Zhao, X., and Sun, X.F., Phys. Rev. B, 2011, vol. 83, no. 1, p. 014414. https://doi.org/10.1103/physrevb.83.014414
  5. Singh, N., Rhee, J.Y., and Auluck, S.J., Korean Phys. Soc., 2008, vol. 53, no. 2, p. 806. https://doi.org/10.3938/jkps.53.806
  6. Hosoya, Y., Itagaki, Y., Aono, H., and Sadaoka, Y., Sensors Actuators B: Chem., 2005, vol. 108, p. 198. https://doi.org/10.1016/j.snb.2004.10.059
  7. Jacob, K., Rajitha, G., and Dasgupta, N., Indian J. Eng. Mater. Sci., 2012, vol. 19, p. 47. http://nopr.niscair.res.in/handle/123456789/13792
  8. Wang, W., Li, S., Wen, Y., Gong, M., and Zhang, L., Acta Phys. Chim., 2008, vol. 24, no. 10, p. 1761. https://doi.org/10.1016/S1872-1508(08)60072-8
  9. Li, L., Liu, X., Zhang, Y., Nuhfer, N.T., Barmak, K., Salvador, P.A., and Rohrer, G.S., Appl. Mater. Interfaces, 2013, vol. 5, p. 5064. https://doi.org/10.1021/am4008837
  10. Zhou, Z., Guo, L., Yang, H., Liu, Q., and Ye, F., J. Alloys Compd., 2014, vol. 583, p. 21. https://doi.org/10.1016/j.jall-com.2013.08.129
  11. Konichenko, T.S., Liberman, E.Yu., Nefedova, R.V., Mikhailichenko, A.I., and Petrov, A.Yu., Usp. Khim. Khim. Tekhnol., 2015, vol. 29, no. 3(162), p. 125.
  12. Li, X., and Duan, Z.-Q., Mater. Lett., 2012, vol. 89, p. 262. https://doi.org/10.1016/j.matlet.2012.08.140
  13. Lenka, R.K., Mahata, T., Patro, P.K., Tyagi, A.K., and Sinha, P.K.,J. Alloys Comp., 2012, vol. 537, p. 100. https://doi.org/10.1016/j.jallcom.2012.05.061
  14. Yafarova, L.V., Chislova, I.V., Zvereva, I.A., Kryuchkova, T.A., Kost, V.V., and Sheshko, T.F., J. Sol-Gel Sci. Technol., 2019, vol. 92, no. 2, p. 264. https://doi.org/10.1007/s10971-019-05013-3
  15. Sheshko, T.F., Kryuchkova, T.A., Sharaeva, A.A., Serov, Y.M., Yafarova, L.V., and Zvereva, I.A., J. Phys. Conf., 2019, vol. 1310, no. 1, p. 012007. https://doi.org/10.1088/1742-6596/1310/1/012007
  16. Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R. D., and Mallard, W.G., J. Phys. Chem. Ref. Data, 1988, vol. 17. Suppl. 1, p. 1.
  17. Kazenas, E.K. and Tagirov, V.K., Metally, 1995, vol. 2, p. 31.
  18. Sidorov, L.N. and Lopatin, S.I., High-Temperature Chemistry Applications of Mass Spectrometry, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Spectroscopy and Spectrometry, New York: Elsevier, 2017, 3 ed., p. 95.
  19. Thermodynamic Properties of Individual Substances. Electronic Reference Book, vol. 5. The Elements Zn, Cu, Fe, Co, Ni, and Their Compounds. http://www.chem.msu.su/rus/tsiv/
  20. Sevastyanov, V. G., Simonenko, E.P., Simonenko, N.P., Stolyarova, V.L, Lopatin, S.I., and Kuznetsov, N.T., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 26, p. 4636. https://doi.org/10.1002/ejic.201300253
  21. Kablov, E.N., Stolyarova, V.L., Lopatin, S.I., Vorozhtcov, V.A., Karachevtsev, F.N., and Folomeikin, Yu.I., Rapid Commun. Mass Spectrom., 2017, vol. 31, no. 6, p. 538. https://doi.org/10.1002/rcm.7809
  22. Kablov, E.N., Stolyarova, V.L., Lopatin, S.I., Vorozhtcov, V.A., Karachevtsev, F.N. and Folomeikin, Y.I., Rapid Commun. Mass Spectrom., 2017, vol. 31, no. 13, p. 1137. https://doi.org/10.1002/rcm.7892
  23. Toropov, N.A., Barzakovskii, V.P., Bondar, I.A., and Udalov, Yu.P.,Diagrammy sostoyaniya silikatnykh sistem. Spravochnik (Phase Diagrams of Silicate Systems. Handbook), Leningrad: Nauka, 1969, Iss. 2.
  24. Chislova, I.V., Matveeva, A.A., Volkova, A.V., and Zvereva, I.A.,Glas. Phys. Chem., 2011, vol. 37, no. 6, p. 653. https://doi.org/10.1134/S1087659611060071
  25. Termodinamicheskie svoistva individual’nykh veschestv (Thermodynamic Properties of Individual Substances), Glushko, V.P., Ed., Moscow: AN SSSR, 1978–1982, vols. 1–4.
  26. Stolyarova, V.L., Lopatin, S.I., Fabrichnaya, O.B., and Shugurov, S.M., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 1, p. 109. https://doi.org/10.1002/rcm.6764
  27. Lopatin, S.I. and Shugurov, S.M., J. Chem. Thermodyn., 2014, vol. 56, no. 5, p. 85. https://doi.org/10.1016/j.jct.2014.01.014