Examples



mdbootstrap.com



 
Статья
2021

Deformation of Nickel Titanium Single Crystal under Compressive Pulse


M. N. KrivosheinaM. N. Krivosheina, E. V. TuchE. V. Tuch
Российский физический журнал
https://doi.org/10.1007/s11182-021-02200-0
Abstract / Full Text

Nickel titanium single crystal is used to show the importance of the volume compressibility anisotropy in analyzing the elastoplastic deformation processes in metal single crystals with the cubic symmetry. The process of uniform bulk deformation corresponds to the process of nonuniform stress-strain state of metal single crystals of cubic symmetry for several orientations of the theoretical coordinate system relative to crystallographic directions of the main axes. The indicative surface of the volume compressibility (or its reciprocal variable of bulk modulus) has an aspherical shape and is the function of the Euler angles. This is shown for the first time based on the solution of the model problem, viz. determination of the stress-strain state of a spherical body made of nickel titanium single crystal during the transmission of a compressive pulse through the tested material. In general case of orientation of the theoretical coordinate system relative to main crystallographic axes, a spherical body made of nickel titanium single crystal undergoes deformation due to the compressive load and acquires the shape of a two-axial ellipsoid.

Author information
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaM. N. Krivosheina & E. V. Tuch
References
  1. R. Gaillac, P. Pullumbi, and F. X. Coudert, J. Phys. Condens. Matter, 28, 275201 (2016).
  2. S. A. Muslov, A. V. Kuznetsov, V. N. Khachin, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 30, No. 8, 104–105 (1987).
  3. Materials Project. Open Web Base. TiNi; www.materialsproject.org/materials/mp-571
  4. X. F. Wang, et al., Phys. Rev. B, 85, 134108 (2012).
  5. S. A. Muslov, A. I. Lotkov, and S. D. Arutyunov, Russ. Phys. J., 62, No. 8, 1417–1427 (2019).
  6. S. A. Muslov and A. I. Lotkov, AIP Conf. Proc., 2051, 020207 (2018).
  7. A. I. Lotkov, V. P. Lapshin, V. A. Goncharova, et al., in: Proc. Int. Sci. Conf. on Martensitic Transformation, Journal de Physique IV, Paris (1995), pp. C8-729–C8-734.
  8. R. Vignjevic, N. Djordjevic, and V. Panov, Int. J. Plasticity, 38, 47–85 (2012).
  9. M. N. Krivosheina, S. V. Kobenko, E. V. Tuch, et al., J. Mater. Sci. Technol., 35, No. 7, 1–8 (2018).
  10. E. V. Tuch and E. A. Strebkova, Russ. Phys. J., 62, No. 4, 705–709 (2019).
  11. R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and S. Stafström, Nature, 392, 362–365 (1998).
  12. Toshihiro Mita, Katsuhiro Kawashima, Masaaki Misumi, and Masafumi Ohkubo, Trans. Jpn. Soc. Mech. Eng. A, 76, No. 763, 290–295 (2010).
  13. Z. A.D. Lethbridge, et al., Acta Mater., 58, 6444–6451 (2010).
  14. A. I. Epishin and D. S. Lisovenko, Tech. Phys. Russ. J. Appl. Phys., 61, No. 10, 1516–1524 (2016).
  15. K. W. Wojciechowski, CMST, 11, No. 1, 73–79 (2005).
  16. A. Ballato, IEEE, 43, No. 1, 56–62 (1996).
  17. S. Lia, H. Hassaninb, M. M. Attallaha, et al., Acta Mater., 105, 75–83 (2016).
  18. SC-EMA: Self-Consistent Elasticity of Multi-phase Aggregates; http://scema.mpie.de
  19. R. Gaillac and F.-X. Coudert; http://progs.coudert.name/elate/mp?query=mp-571
  20. ELATE: Elastic Tensor Analysis; http://progs.coudert.name/elate
  21. Dušan Lago, Effective Tool for Material Elasticity Computation, Master’s Thesis. Spring, Brno (2017).