Examples



mdbootstrap.com



 
Статья
2010

Estimation of the efficiency of the hybrid LIDAR-DOAS system of lidar sensing of the polluted atmosphere using pulsed excilamps


G. M. KrekovG. M. Krekov, M. M. KrekovaM. M. Krekova, A. A. LisenkoA. A. Lisenko, A. Ya. SukhanovA. Ya. Sukhanov, M. V. ErofeevM. V. Erofeev, M. I. LomaevM. I. Lomaev, V. F. TarasenkoV. F. Tarasenko
Российский физический журнал
https://doi.org/10.1007/s11182-010-9475-1
Abstract / Full Text

Results of a closed numerical experiment on laser sensing of minor gas impurity concentrations in the tropospheric layer of the atmosphere based on new hybrid LIDAR-DOAS technique with a XeCl* excilamp used for a pulsed wideband radiation source are discussed. Quantitative estimates obtained using a new stochastic genetic search algorithm confirm that the suggested approach, expanding the possibilities of the classical Differential Optical Absorption Spectroscopy (DOAS) system to remote monitoring and localization of dangerous anthropogenic emissions of toxic gases up to the tropopause height, is promising. The necessity of estimating backscattered signals with high spectral resolution by solving the nonstationary radiative transfer equation calls for a significant modification of the statistical simulation algorithms. A combination of the Monte Carlo method with a genetic algorithm of solving inverse problems of reconstructing profiles of gaseous components in the troposphere enables exact quantitative prediction of the efficiency of new promising lidar systems of environmental monitoring to be provided.

Author information
  • V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaG. M. Krekov, M. M. Krekova, A. A. Lisenko & A. Ya. Sukhanov
  • High-Current Electronics Institute of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaM. V. Erofeev, M. I. Lomaev & V. F. Tarasenko
References
  1. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Principles of Atmospheric Optics [in Russian], Nauka, Saint Petersburg (2003).
  2. http://www.bellona.ru/Casefiles/kioto.
  3. I. V. Samokhvalov, ed., Spectroscopic Methods of Atmospheric Sensing [in Russian], Nauka, Novosibirsk (1985).
  4. U. Platt and D. Perner, J. Geophys. Res., 85, 7453–7458 (1980).
  5. U. Platt, in: Air Monitoring Encyclopedia of Analytical Chemistry, R. A. Meyers, ed., John Wiley and Sons Ltd, Chichester (2000), pp. 1936–1959.
  6. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy. Principles and Application, Springer, Berlin; Heidelberg (2008).
  7. G. M. Krekov, M. M. Krekova, and A. Ya. Sukhanov, Opt. Atm. Okeana, 22, No. 4, 661–670 (2009).
  8. S. A. Trushin, W. Fuss, K. Kosma, and W. E. Schmid, Appl. Phys., B85, 1–5 (2006).
  9. A. A. Lisenko and M. I. Lomaev, Opt. Atm. Okeana, 15, No. 3, 293–297 (2002).
  10. E. Arnold, M. I. Lomaev, A. A. Lisenko, et al., Laser Physics, 14, No. 6, 809–817 (2004).
  11. M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, et al., Pis’ma Zh. Tekh. Fiz., 32, No. 13, 74–79 (2006).
  12. M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, et al., Prib. Tekh. Eksp., 49, No. 5, 5–26 (2006).
  13. E. A. Sosnin, M. V. Erofeev, A. A. Lisenko, et al., Opt. Zh., 69, No. 7, 77–80 (2002).
  14. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, et al., Usp. Fiz. Nauk, 173, 201–217 (2003).
  15. J. F. Noxon, Science, 189, 547–549 (1975).
  16. J. F. Noxon, E. C. Whipple, and R. S. Hyde, J. Geophys. Res., 84, 5047–5076 (1979).
  17. U. Platt, D. Perner, and H. W. Patz, J. Geophys. Res., 84, 6329–6335 (1979).
  18. L. S. Rothman, D. Jacquemart, A. Barbe, et al., J. Quant. Spec. Rad. Transfer, 96, 139–204 (2005).
  19. R. L. Jones, SPIE Opt. Methods Atm. Chem., 15, 393–402 (1992).
  20. K. Strong and R. L. Jones, Appl. Opt., 34, 6223–6235 (1995).
  21. I. M. Povey, A. M. South, C. Hill, et al., J. Geophys. Res., 103, 3369–3380 (1998).
  22. M. Douard, R. Bacis, P. Rambaldini, and J. P. Wolf, Opt. Lett., 20, 2140–2142 (1995).
  23. H. Wille, M. Rodrigues, and J. Kasparian, Eur. Phys. J. Appl. Phys., 20, 183–190 (2002).
  24. J. Kasparian, M. Rodrigues, G. Mejean, et al., Science, 301, 61–64 (2003).
  25. T. Somekawa, C. Yamanaka, M. Fujita, and M. C. Galvez, Jpn. J. Appl. Phys., 47, 2155–2157 (2008).
  26. W. M. Irvine, Bull. Astron. Inst. Nether., 17, 266–279 (1964).
  27. G. M. Krekov, M. M. Krekova, and A. I. Sukhanov, Opt. Atm. Okeana, 22, 482–493 (2009).
  28. B. R. Lienert, J. N. Porter, and S. K. Sharma, Appl. Opt., 40, 3476–3482 (2001).
  29. N. S. Mera, L. Elliott, and D. B. Ingham, Comput. Mech., 33, 254–262 (2004).
  30. V. E. Zuev and M. V. Kabanov, Optical Signal Transfer in the Earth’s Atmosphere [in Russian], Sov. Radio, Moscow (1977).
  31. G. M. Krekov, V. M. Orlov, and V. V. Belov, Imitational Modeling in Problems of Optical Remote Sensing [in Russian], Nauka, Novosibirsk (1988).
  32. G. M. Krekov, Opt. Atm. Okeana, 22, 47–55 (2009).
  33. M. V. Erofeev and V. F. Tarasenko, J. Phys., D39, 3609–3614 (2006).
  34. V. E. Zuev and G. M. Krekov, Modern Problems of Atmospheric Optics. Vol. 2. Optical Models of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1986).