Effect of Parameters of Pulse Electrolysis on Electrodeposition of Copper–Tin Alloy from Sulfate Electrolyte

A. A. Kasach A. A. Kasach , D. S. Kharitonov D. S. Kharitonov , S. L. Radchenko S. L. Radchenko , I. M. Zharskii I. M. Zharskii , I. I. Kurilo I. I. Kurilo
Российский электрохимический журнал
Abstract / Full Text

The effect of pulsed electrolysis on the electrodeposition of Cu–Sn alloy from the sulfate–sulfuric acid electrolyte is studied. It is shown that the codeposition of copper and tin is observed only at the potentials, which provide the discharge of copper(II) ions under the diffusion control. The transient time of electroreduction of copper(II) ions and the concentrations of Cu2+ ions in the near-cathode region in the pause are calculated. It is shown that a decrease of the pause duration leads to the alloy deposition at lower current densities. It is found that the use of pulsed electrolysis enables one to raise significantly (by 3 times) the range of cathodic current densities for production of high-quality yellow-bronze coatings. The effect of pulse duration and amplitude on the qualitative and quantitative compositions of the alloy is determined.

Author information
  • Belarusian State Technological University, 220006, Minsk, Belarus

    A. A. Kasach, D. S. Kharitonov, S. L. Radchenko, I. M. Zharskii & I. I. Kurilo

  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland

    D. S. Kharitonov

  1. Li, X., Ivas, T., Spierings, A.B., Wegener, K., and Leinenbach, C., Phase and microstructure formation in rapidly solidified Cu–Sn and Cu–Sn–Ti alloys, J. Alloys Compd., 2018, vol. 735, p. 1374.
  2. Maizelis, A., Contact exchange in tetrafluoroborate-EDTA electrolyte for Cu–Sn alloy deposition, Mater.Today-Proc., 2019, vol. 6, p. 135.
  3. Jung, M., Lee, G., and Choi, J., Electrochemical plating of Cu–Sn alloy in non-cyanide solution to substitute for Ni undercoating layer, Electrochim. Acta, 2017, vol. 241, p. 229.
  4. Abbott, A.P., Alhaji, A.I., Ryder, K.S., Horne, M., and Rodopoulos, T., Electrodeposition of copper–tin alloys using deep eutectic solvents, Trans. Inst. Met. Finish., 2016, vol. 94, p. 104.
  5. Meudre, C., Ricq, L., Hihn, J.Y., Moutarlier, V., Monnin, A., and Heintz, O., Adsorption of gelatin during electrodeposition of copper and tin–copper alloys from acid sulfate electrolyte, Surf. Coat. Tech., 2014, vol. 252, p. 93.
  6. Correia, A.N., Façanha, M.X., and de Lima-Neto, P., Cu–Sn coatings obtained from pyrophosphate-based electrolytes, Surf. Coat. Tech., 2007, vol. 201, p. 7216.
  7. Asnavandi, M., Ghorbani, M., and Kahram, M., Production of Cu–Sn–graphite–SiC composite coatings by electrodeposition, Surf. Coat. Tech., 2013, vol. 216, p. 207.
  8. Ying, L., Fu, Z., Wu, K., Wu, C., Zhu, T., Xie, Y., and Wang, G., Effect of TiO2 sol and PTFE emulsion on properties of Cu–Sn antiwear and friction reduction coatings, Coatings, 2019, vol. 9, no. 1, p. 59.
  9. Afshar, A., Ghorbani, M., and Mazaheri, M., Electrodeposition of graphite–bronze composite coatings and study of electroplating characteristics, Surf. Coat. Tech., 2004, vol. 187, nos. 2–3, p. 293.
  10. Kasach, A.A., Kurilo, I.I., Kharitonov, D.S., Radchenko, S.L., and Zharskii, I.M., Effect of sonochemical treatment modes on the electrodeposition of Cu–Sn alloy from oxalic acid electrolyte, Russ. J. Appl. Chem., 2018, vol. 91, no. 4, p. 591.
  11. Kasach, A.A., Kharitonov, D.S., Romanovskii, V.I., Kuz’menok, N.M., Zharskii, I.M., and Kurilo, I.I., Electrodeposition of Cu–Sn alloy from oxalic acid electrolyte in the presence of amine-containing surfactants, Russ. J. Appl. Chem., 2019, vol. 92, no. 4, p. 835.
  12. Pewnim, N. and Roy, S., Effect of fluorosurfactant additive during Cu–Sn codeposition from methanesulfonic acid, J. Electrochem. Soc., 2015, vol. 162, no. 8, p. 360.
  13. Low, C.T.J. and Walsh, F.C., The stability of an acidic tin methanesulfonate electrolyte in the presence of a hydroquinone antioxidant, Electrochim. Acta, 2008, vol. 53, no. 16, p. 5280.
  14. Bengoa, L.N., Pary, P., Conconi, M.S., and Egli, W.A., Electrodeposition of Cu–Sn alloys from a methanesulfonic acid electrolyte containing benzyl alcohol, Electrochim. Acta, 2017, vol. 256, p. 211.
  15. Walsh, F.C. and Low, C.T.J., A review of developments in the electrodeposition of tin–copper alloys, Surf. Coat. Technol., 2016, vol. 304, p. 246.
  16. Gupta, A. and Srivastava, C., Enhanced corrosion resistance by SnCu-graphene oxide composite coatings, Thin Solid Films, 2019, vol. 669, p. 85.
  17. Rozovskis, G., Mockus, Z., Pautienien, V., and Survila, A., Electrochemical determination of Sn(IV)/Sn(II) ratio in tin sol formed in copper–tin sulphate solution containing laprol 2402C, Electrochem. Commun., 2002, vol. 4, no. 1, p. 76.
  18. Ortiz, G.F., López, M.C., Alcántara, R., and Tirado, J.L., Electrodeposition of copper–tin nanowires on Ti foils for rechargeable lithium micro-batteries with high energy density, J. Alloys Compd., 2014, vol. 585, p. 331.
  19. Meudre, C., David, J., Ricq, L., Hihn, J.Y., and Moutarlier, V., Elaboration of copper–tin alloys coatings: effect of glycine, J. Mater. Environ. Sci., 2015, vol. 6, no. 7, p. 1834.
  20. Barbano, E.P., de Oliveira, G.M., de Carvalho, M.F., and Carlos, I.A., Copper–tin electrodeposition from an acid solution containing EDTA added. Surf. Coat. Technol., 2014, vol. 240, p. 14.
  21. Survila, A., Mockus, Z., Kanapeckaitė, S., Jasulaitienė, V., and Juškėnas, R., Codeposition of copper and tin from acid sulphate solutions containing gluconic acid, J. Electroanal. Chem., 2010. vol. 647, no. 2, p. 123.
  22. Kasach, A.A., Kurilo, I.I., Kharitonov, D.S., Radchenko, S.L., and Zharskii, I.M., Sonochemical electrodeposition of copper coatings, Russ. J. Appl. Chem., 2019, vol. 91, no. 2, p. 207.
  23. Chandrasekar, M.S. and Pushpavanam, M., Pulse and pulse reverse plating–Conceptual, advantages and applications, Electrochim. Acta, 2008, vol. 53, no. 8, p. 3313.
  24. Ramaprakash, M., Mohan, S., and Rajasekaran, N., Pulse and pulse reverse electrodeposition of cubic, tetragonal and its mixed phase of Ni–W alloys for corrosion applications, J. Electrochem. Soc., 2019, vol. 166, no. 6, p. 145.
  25. Mirsaeed-Ghazi, S.M., Allahkaram, S.R., and Molaei, A., Development and investigation of Cu/SiC nano-composite coatings via various parameters of DC electrodeposition, Tribol. Int., 2019, vol. 134, p. 221.
  26. Banthia, S., Sengupta, S., Das, S., and Das, K., Synthesis and characterization of novel Cu, Cu–SiC functionally graded coating by pulse reverse electrodeposition, Appl. Surf. Sci., 2019, vol. 467, p. 567.
  27. Khorashadizade, F., Saghafian, H., and Rastegari, S., Effect of electrodeposition parameters on the microstructure and properties of Cu–TiO2 nanocomposite coating, J. Alloys Compd., 2019, vol. 770, p. 98.
  28. Pena, E.M.D. and Roy, S., Electrodeposited copper using direct and pulse currents from electrolytes containing low concentration of additives, Surf. Coat. Technol., 2018, vol. 339, p. 101.
  29. Green, T., Su, X., and Roy, S., Pulse plating of copper from deep eutectic solvents, ECS Transactions, 2017, vol. 77, no. 11, p. 1247.
  30. Sun, J., Ming, T.-Y., Qian, H.-X., and Li, Q.-S., Electrochemical behaviors and electrodeposition of single-phase Cu–Sn alloy coating in [BMIM] Cl, Electrochim. Acta, 2019, vol. 297, p. 87.
  31. Juškėnas, R., Mockus, Z., Kanapeckaitė, S., Stalnionis, G., and Survila, A., XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys, Electrochim. Acta, 2006, vol. 52, no. 3, p. 928.
  32. Meng, G., Sun, F., Wang, S., Shao, Y., Zhang, T., and Wang, F., Effect of electrodeposition parameters on the hydrogen permeation during Cu–Sn alloy electrodeposition. Electrochim. Acta, 2010, vol. 55, no. 7, p. 2238.
  33. Pu, W., He, X., Ren, J., Wan, C., and Jiang, C., Electrodeposition of Sn–Cu alloy anodes for lithium batteries. Electrochim. Acta, 2005, vol. 50, no. 20, p. 4140.
  34. Wu, L., Graves, J.E., and Cobley, A.J., Mechanism for the development of Sn–Cu alloy coatings produced by pulsed current electrodeposition, Mater. Lett., 2018, vol. 217, p. 120.
  35. Mareev, S.A., Butyl’skii, D.Y., Kovalenko, A.V., Pis’menskaya, N.D., Dammak, L., Larchet, C., and Nikonenko, V.V., Inclusion of the concentration dependence of the diffusion coefficient in the Sand equation. Russ. J. Electrochem., 2016, vol. 52, no. 10, p. 996.
  36. Aniskevich, Y.M., Malashchonak, M.V., Bakavets, A.S., Ragoisha, G.A., and Streltsov, E. A., Determination of the electrochemically active surface area of PbSe and Bi2Te3 films using the deposition of lead atoms, Theor. Exp. Chem., 2019, vol. 55, no. 1, p. 64.
  37. Hinatsu, J.T. and Foulkes, F.R., Diffusion coefficients for copper(II) in aqueous cupric sulfate–sulfuric acid solutions. J. Electrochem. Soc., 1989, vol. 136, p. 125.