Chemical Oxidation of LiFePO4 in Aqueous Medium as a Method for Studying Kinetics of Delithiation

A. P. Kurbatov A. P. Kurbatov , F. I. Malchik F. I. Malchik , A. K. Galeyeva A. K. Galeyeva , D. S. Davydchenko D. S. Davydchenko , A. K. Rakhimova A. K. Rakhimova , M. S. Lepikhin M. S. Lepikhin , D. Kh. Kamysbayev D. Kh. Kamysbayev
Российский электрохимический журнал
Abstract / Full Text

The kinetics of LiFePO4 oxidation by hydrogen peroxide in aqueous alkaline medium is studied with the use of potentiometric determination of lithium concentration in solution during delithiation. It is demonstrated that the lithium transfer through the reaction-product layer is controlled by diffusion. The activation energy and the diffusion coefficient of the species transferred in the solid phase during the chemical reaction of oxidative delithiation are determined and the parameters of this processes are analyzed.

Author information
  • Center of Physical and Chemical Methods of Research and Analysis, Almaty, Kazakhstan

    A. P. Kurbatov, F. I. Malchik, A. K. Galeyeva, D. S. Davydchenko, A. K. Rakhimova & M. S. Lepikhin

  • Al-Farabi Kazakh National University, Almaty, 050012, Kazakhstan

    A. P. Kurbatov, F. I. Malchik, A. K. Galeyeva, A. K. Rakhimova & D. Kh. Kamysbayev

  1. Padhi, A., Nanjundaswamy, K., and Goodenough, J., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1148.
  2. Herle, P., Ellis, B., Coombs, N., and Nazar, L., Nanonetwork electronic conduction in iron and nickel olivine phosphates, Nat. Matter, 2004, vol. 3, p. 147.
  3. Molenda, J., Ojczyk, W., and Marzec, J., Electrical conductivity and reaction with lithium of LiFe1−yMnyPO4 olivine-type cathode materials, J. Power Sources, 2007, vol. 174, p. 689.
  4. Franger, S., Le Gras, F., Bourbon, C., and Rouault, H., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties, J. Power Sources, 2003, vol. 119, p. 252.
  5. Franger, S., Le Gras, F., Bourbon, C., and Rouault, H., Optimized lithium iron phosphate for high-rate electrochemical applications, J. Electrochem. Soc., 2004, vol. 151, p. 1024.
  6. Hoshi, Y., Narita, Y., Honda, K., Ohtaki, T., Shitanda, I., and Itagaki, M., Optimization of reference electrode position in a three-electrode cell for impedance measurements in lithium-ion rechargeable battery by finite element method, J. Power Sources, 2015, vol. 288, p. 168.
  7. Scipioni, R., Jørgensen, S., Ngo, D.-T., Simonsen, S.B., Liu, Zh., Yakal-Kremsi, K.J., Wang, H., Hjelm, J., Norby, P., Barnett, S.A., and Jensen, S.H., Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes, J. Power Sources, 2016, vol. 307, p. 259.
  8. Weichert, K., Sigle, W., van Aken, P.A., Jamnik, J., Zhu, C., Amin, R., Acartürk, T., Starke, U., and Maier, J., Phase boundary propagation in large LiFePO4 single crystals on delithiation, J. Am. Chem. Soc, 2012, vol. 134, p. 2988.
  9. Safronov, D.V., Pinus, I.Yu., Profatilova, I.A., Tarnopol’skii, V.A., Skundin, A.M., and Yaroslavtsev, A.B., Kinetics of lithium deintercalation from LiFePO4, Inorg. Mat, 2011, vol. 3, vol. 47, p. 303.
  10. Trinh, N.D., Liang, G., Gauthier, M., and Schougaard, B., A rapid solution method to determine the charge capacity of LiFePO4, J. Power Sources, 2012, vol. 200, p. 92.
  11. Jones, J.L., Hang, J.T., and Meng, Y.S., Intermittent X-ray diffraction study of kinetics of delithiation in nano-scale LiFePO4, J. Power Sources, 2009, vol. 189, p. 702.
  12. Lepage, D., Sobh, F., Kuss, C., Liang, G., and Schougaard, S.B., Delithiation kinetics study of carbon coated and carbon free LiFePO4, J. Power Sources, 2014, vol. 256, p. 61.
  13. GOST (State Standard) 61-2003 Indices of Accuracy, Correctness, Precision of Procedures of Quantitative Chemical Analysis. Estimation Methods, 2003.
  14. Chan, H.-H., Chang, Ch.-Ch., Wu., H.-Ch., Guo, Zh.-Zh., Yang., M.-H., Chiang, Y.-P., Shue, H.-Sh., and Wu, N.-L., Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction, J. Power Sources, 2006, vol. 158, p. 550.
  15. Huang, Y., Ren, H., Peng, Zh., and Zhou, Y., Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method, Electrochim. Acta, 2009, vol. 55, p. 311.
  16. Zhang, W.J., Structure and performance of LiFePO4 cathode materials: A review, J. Power Sources, 2011, vol. 196, p. 2962.
  17. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, p. 826.
  18. Wittingham, M.S., Electrical energy storage and intercalation chemistry, Science, 1976, vol. 192, p. 1126.
  19. Oyama, G., Yamada, Y., Natsui, R.I., Nishimura, S.I., and Yamada, A., Kinetics of nucleation and growth in two-phase electrochemical reaction of LixFePO4, J. Phys. Chem. C, 2012, vol. 116, p. 7306.
  20. Allen, J.L., Jow, T.R., and Wolfenstine, J., Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition, Chem. Matter., 2007, vol. 19, p. 2108.
  21. Allen, J.L., Jow, T.R., and Wolfenstine, J., Analysis of the FePO4 to LiFePO4 phase transition, Solid State Electrochem., 2008, vol. 12, p. 1031.
  22. Morgan, D., Van der Ven, A., and Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett., 2008, vol. 12, p. 1031.
  23. Li, J.Y., Yao, W.L., Martin, S., and Vaknin, D., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries, Solid State Ionics, 2004, vol. 7, p. 30.
  24. Wang, L., Zhou, F., Meng, Y.S., and Ceder, G., Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B, 2007, vol. 30, p. 76.
  25. Rozovskii, A.Ya., Kinetika topokhimicheskikh reaktsii (Kinetics of Topochemical Reactions), Moscow: Khimiya, 1974.
  26. Criado, J.M., About remarks on the application of the combined Kolmogorov–Erofeev–Kazeev–Avrami–Mampel equation in the kinetics of non-isothermal transformations, J. Thermal Analysis, 1980, vol. 19, p. 381.
  27. Ellis, B.L., Lee, K.T., and Nazar, L.F. Positive electrode materials for Li-ion and Li-batteries, Chem. Mater, 2010, vol. 22, p. 691.
  28. Sakovich, G.V., Zh. Fiz. Khim., 1959, no. 33, p. 636.
  29. Yamada, Y., Hiroshi, K., Sonoyama, N., and Kanno, R., Phase change in LixFePO4, Electrochem. Solid-State Lett., 2005, vol. 8, p. 409.
  30. Zhu, Y. and Wang, C., Galvanostatic intermittent titration technique for phase-transformation electrodes, J. Phys. Chem. C, 2010, vol. 114, p. 2830.
  31. Tang, K., Yu, X., Sun, J., Li, H., and Huang, X., Kinetic analysis on LiFePO4 thin films by CV,GITT, and EIS, Electrochim. Acta, 2011, vol. 56, p. 4869.
  32. Manjunatha, H., Venkatesha, T.V., and Suresh, G.S., Kinetics of electrochemical insertion of lithium ion into LiFePO4 from aqueous 2 M Li2SO4 solution studied by potentiostatic intermittent titration technique, Electrochim. Acta, 2011, vol. 58, p. 247.
  33. Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A., Experimental visualization of lithium diffusion in LixFePO4, Nat. Matter, 2008, vol. 7, p. 707.
  34. Maxish, T., Zhou, F., and Ceder, G., Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies, Phys. Rev., 2006, vol. 73, p. 104301.
  35. Morgan, D., Van der Ven, A., and Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett., 2004, vol. 7, p. 30.
  36. Scheidemantel, T.J., Ambrosch, D.C., Thonhauser, T., Badding, J.V., and Sofo, J., Transport coefficients from first-principles calculations, Phys. Rev. 2003, vol. 68, p. 125210.