Examples



mdbootstrap.com



 
Статья
2020

Comparative Evaluation of Dimethylsulfoxide and Dimethylsulfone Adsorption on a Smooth Platinum Electrode in Acidic Environment


M. A. AkhmedovM. A. Akhmedov, K. O. IbragimovaK. O. Ibragimova, Sh. Sh. KhidirovSh. Sh. Khidirov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520040023
Abstract / Full Text

a comparative assessment of dimethylsulfoxide and dimethylsulfone adsorption on a smooth platinum electrode in acidic medium in the region of anode potentials is presented. The adsorption isotherms in the “hydrogen” potential range, depending on the dimethylsulfoxide and dimethylsulfone concentration, are S-shaped. At the adsorbate concentrations in the solution exceeding 0.1 M, the surface coverage with dimethylsulfoxide and dimethylsulfone is nearly the same and changes but slightly. A significant difference in the adsorption characteristics of dimethylsulfoxide and dimethylsulfone in the potential region of oxygen adsorption is found. According to the Pt-electrode surface coverage with oxygen in the presence of the test substances, it was concluded that the value of the dimethylsulfoxide and dimethylsulfone adsorption is maximal only when their bulk concentration is higher than 0.1 M, here the oxygen surface coverage in the presence of dimethylsulfone exceeds that in the background solution.

Author information
  • Analytical Center for Collective Use, Dagestan Federal Research Center, Russian Academy of Sciences, Makhachkala, RussiaM. A. Akhmedov
  • Dagestan State University, Makhachkala, RussiaM. A. Akhmedov, K. O. Ibragimova & Sh. Sh. Khidirov
References
  1. Zhang, H., Li, Ch., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L.M., Armand, M., and Zhou, Z., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chem. Soc. Rev. 2017, vol. 46, no. 3, p. 797. https://doi.org/10.1039/c6cs00491a
  2. Hilbig, P., Ibing, L., Wagner, R., Winter, M., and Cekic-Laskovic, I., Ethyl methyl sulfone-based electrolytes for lithium ion battery applications, Energies, 2017, vol. 10, no. 9, p. 1312. https://doi.org/10.3390/en10091312
  3. Shota, F. and Thomas, J.M., Sulfone-containing methacrylate homopolymers: wetting and thermal properties, Langmuir, 2016, vol. 32, no. 3, p. 765. https://doi.org/10.1021/acs.langmuir.5b04265
  4. Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state of the art and prospects for the development of electrolyte systems for lithium power sources, Electrochem. energy (in Russian), 2016, no. 4 (16), p. 155. https://doi.org/10.18500/1608-4039-2016-4-155-195
  5. Gafurov, M.M., Kirillov, S.A., Gorobets, M.I., Rabadanov, K. Sh., Ataev, M.B., Tretyakov, D.O., and Aydemirov, K.M., Phase equilibrium and ionic solvation in the lithium tetrafluoroborate-dimethylsulphoxide system, JAS, 2014, no. 6 (81), p. 912. https://doi.org/10.1007/s10812-015-0028-9
  6. Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Aliev A.R., Ahmedov, I.R., Kakagasanov, M.G., and Kraminin, S.P., Vibrational spectra of an LiNO3–(CH3)2SO2 system, JAS, 2012, no. 2 (79), p. 184. https://doi.org/10.1007/s10812-012-9581-7
  7. Fanny, B., Yuhui, Ch., Lee, J., Schaltin, S., Jan, F., and Bruce P.G., Sulfone-based electrolytes for nonaqueous Li–O2 batteries, Phys. Chem. C, 2014, vol. 118, no. 33, p. 18892. https://doi.org/10.1021/jp5048198
  8. Maca, J., Frk, M., Rozsivalova, Z., and Sedlarikova, M., Properties of sulfolane based aprotic electrolytes, Electrochim. Acta, 2013, vol. 31, no. 6, p. 321. https://doi.org/10.4152/pea.201306321
  9. Markaryan, Sh.A., Aznauryan, M.G., and Kazoyan, E.A., Physicochemical properties of aqueous solutions of dimethyl- and diethylsulfones, Russ. J. Phys. Chem., 2011, no. 12 (85), p. 2138. https://doi.org/10.1134/S0036024411120211
  10. Kolosnitsyn, V.S., Kostryukova, N.V., and Legostaeva, M.V., Electrical conductivity and thermal properties of gel polymer electrolytes based on sulfones, Electrochem. energy (in Russian), 2004, no. 2 (4), p. 90.
  11. Vandermeeren, L., Leyssens, T., and Peeters, D., Theoretical study of the properties of sulfone and sulfoxide functional groups, J. Molecular Structure: THEOCHEM, 2007, vol. 804, no. 3, p. 1006. https://doi.org/10.1016/j.theochem.2006.10.006
  12. Xu, K. and Angela, C.A., High anodic stability of a; new electrolyte solvent: un-symmetric noncyclic aliphatic sulfone, Electrochem. Soc., 1998, vol. 145, no. 4, p. 70.
  13. Frumkin, A.N., Damaskin, B.B., Grigoryev, N.B., and Bagotskaya, I.A., Potentials of zero charge, interaction of metals with water and adsorption of organic substances. I. Potentials of zero charge and hydrophilicity of metals, Electrochim. Acta, 1974, vol. 19, no. 2, p. 69. https://doi.org/10.1016/0013-4686(74)85058-9
  14. Kazarinov, V.E., Adsorption of anions on platinum at anodic potentials, Russ. J. Electrochem., 1966, vol. 2, no. 12, p. 1389.
  15. Bagotsky, V.S., Basics of electrochemistry (in Russian), Moscow: Khimiya, 1988.
  16. Petrii, O.A., Adsorption phenomena on platinum group metal electrodes, Russ. Chem. Rev, 1975, vol. 44, no. 11, p. 973.
  17. Damaskin, B.B., Nekrasov, L.N., Petrii, O.A., Podlovchenko, B.I., Stenina, E.V., and Fedorovich, N.V., Electrode processes in solutions of organic compounds (in Russian), Moscow: Moscow State University, 1985.
  18. Clavilier, J., The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region, J. Electroanal. Chem., 1980, vol. 107, no. 1, p. 211. https://doi.org/10.1016/s0022-0728(79)80023-6
  19. Danilov, A.I., Molodkina, E. B., and Polukarov, Yu.M., Surface and subsurface oxygen on platinum. Solution 0.5 M H2SO4, Russ. J. Electrochem., 2004, vol. 40, p. 667.
  20. Votchenko, E.Y., Kubanova, M.S., Smirnova, N.V., and Petrii, O.A., Adsorption and electrooxidation of dimethyl ether on platinized platinum electrode in sulfuric acid, Russ. J. Electrochem., 2010, vol. 46, p. 212. https://doi.org/10.1134/S1023193510020138
  21. Petrii, O.A. Zero charge potentials of platinum metals and electron work functions (A review), Russ. J. Electrochem., 2013, vol. 49, p. 401.] https://doi.org/10.7868/S0424857013050149
  22. Tarasevich M.R. and Korchagin, O.V., Electrocatalysis and pH A (review), Russ. J. Electrochem., 2013, vol. 49, p. 676. https://doi.org/10.1134/S102319351307015X
  23. Turygin, V.V. and Tomilov, A.P., Possible trends in the development of applied electrochemical synthesis of organic compounds (review), Russ. J. Electrochem., 2015, vol. 51, p. 999. https://doi.org/10.1134/S1023193515110191
  24. Baturina, O.A., Gould, B.D., Korovina, A., Garsany, Y., Stroman, R., and Northrup, P.A., Products of SO2 adsorption on fuel cell electrocatalysts by combination of sulfur K-edge XANES and electrochemistry, Langmuir, 2011, vol. 27, no. 24, p. 14930. https://doi.org/10.1021/la2033466
  25. Garcia-Araez, N., Climent, V., Rodriguez, P., and Feliu, J.M., Elucidation of the chemical nature of adsorbed species for Pt(111) in H2SO4. Solutions by Thermodynamic Analysis, Langmuir, 2010, vol. 26, no. 14, p. 12408. https://doi.org/10.1021/la101112b
  26. Hoshi, N., Nakamura, M., Sakata, O., Nakahara, A., Naito, K., and Ogata, H., Surface X-ray scattering of stepped surfaces of platinum in an electrochemical environment: Pt(331) = 3(111)–(111) and Pt(511) = 3(100)–(111), Langmuir, 2011, vol. 27, no. 7, p. 4236. https://doi.org/10.1021/la200199b
  27. Jerkiewicz, G., Vatankhah, G., Tanaka, S., and Lessard, J., Discovery of the potential of minimum mass for platinum electrodes, Langmuir, 2011, vol. 27, no. 7, p. 4220. https://doi.org/10.1021/la200153n
  28. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mechanism of electrode reactions of organic intermediates with and without the participation of a proton donor/acceptor, Russ. J. General Chem., 2005, vol. 49, no. 5, p. 17.
  29. Krivenko, A.G., Kotkin, A.S., and Kurmaz, V.A., Mechanism of electroreduction of intermediates with and without a proton donor, Electrochim. Acta, 2002, vol. 47, no. 24, p. 3891. https://doi.org/10.1016/S0013-4686(02)00358-4
  30. Shah, J., Kansara, S., Sanjeev, K.G., and Yogesh, S., Oxygen adsorption on palladium monolayer as a surface catalyst, Physics Letters A, 2017. vol. 381. p. 3084. https://doi.org/10.1016/j.physleta.2017.07.024
  31. Ruge, M., Drnec, J., Rahn, B., Reikowski, F., Harrington, D. A., Carlà, F., and Magnussen, O.M., Structural reorganization of Pt(111) electrodes by electrochemical oxidation and reduction, J. Amer. Chem. Soc., 2017, vol. 139, no. 12, p.4532. https://doi.org/10.1021/jacs.7b0103
  32. Gómez-Marín, A.M. and Feliu, J.M. Oxygen reduction on platinum single crystal electrodes, Reference Module in Chemistry, Molecular Sci. and Chem. Engineering (Encyclopedia of Interfacial Chemistry), 2018, p. 820. https://doi.org/10.1016/B978-0-12-409547-2.13333-5
  33. Krivenko, A.G., Komarova, N.S., Stenina, E.V., and Sviridova, L.N., Adsorption of surface-active compounds with the skeleton molecular structure from dimethylsulfoxide solutions on carbon nanotubes, Russ. J. Electrochem., 2012, vol. 48, p. 36. https://doi.org/10.1134/S1023193512010107
  34. Stenina, E.V, Sviridova, L.N., and Petrov, N.K., Adsorption phenomena in the systems containing macrocyclic cavitand cucurbit[7]uryl, Russ. J. Electrochem., 2017, vol. 53, p. 103. https://doi.org/10.1134/S102319351701013X
  35. Alekseeva, E.Yu., Safonov, V.A., and Petry, O.A., Potentials of zero charge and the structure of the electric double layer on platinum and palladium in dimethyl sulfoxide, Russ. J. Electrochem., 1984, vol. 20, p. 945.
  36. Sobkowski, J. and Szklarczyk, M., The behaviour of high polar organic solvents on platinum electrodes–I. The study of adsorption and electrode reactions of dimethylsulphoxide, Electrochim. Acta, 1980, vol. 25, p. 383. https://doi.org/10.1016/0013-4686(80)87027-7
  37. Dabkowski, J., Zagórska, I., Dabkowska, M., Koczorowski, Z., and Trasatti, S., Adsorption of DMSO at the free surface of water: surface excesses and surface potential shifts in the low concentration range, J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 3873. https://doi.org/10.1039/FT9969203873
  38. Osadchenko, I. M. and Tomilov, A.P., Electrochemical oxidation of methyl sulfide in aqueous solutions, Russ. J. Electrochem., 2002, vol. 38, p. 658. https://doi.org/10.1023/a:1016014920832
  39. Tanaskovic, V., Pasti, I. A., Gavrilov, N., and Mentus, S.V., Dimethylsulfoxide as a modifier of platinum electrocatalytic activity toward oxygen reduction reaction in aqueous solutions: Combined theoretical and experimental study, J. Electroanalyt. Chem., 2014, vol. 714–715, p. 11. https://doi.org/10.1016/j.jelechem.2013.12.020
  40. Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Investigation of Electrochemical Behavior of Secondary Products of Capture of OH Radicals by Dimethyl Sulfoxide Molecules Using Laser Photoemission, Moscow Univer. Chem. Bull., 2013, vol. 68, no. 6, p. 273. https://doi.org/10.3103/S0027131413060023
  41. Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Laser photoemission generation and electrochemical study of methyl radicals as secondary products of OH radicals capture by dimethyl sulfoxide molecules, J. Solid State Electrochem., 2011, vol. 15, no. 10, p. 2119. https://doi.org/10.1007/s10008-011-1534-1
  42. Khibiev, Kh.S., Omarova, K.O., and Khidirov, Sh.Sh., Electrochemical synthesis of dimethylsulfone and methanesulfonic acid from dimethylsulfoxide, Russ. J. Electrochem., 2010, vol. 46, no. 8, p. 960. https://doi.org/10.1134/S1023193510080161
  43. Khidirov, Sh.Sh. and Omarova, K.O., Adsorption of oxygen and dimethyl sulfoxide on the mono atom of the smooth surface of the platinum anode at high potentials, Herald DGU (in Russian), 2013, no. 1 (28), p. 177.
  44. Khidirov, Sh.Sh., Omarova, K.O., and Hibiev, Kh.S. The mechanism of anodic oxidation of dimethyl sulfoxide on platinum in an alkaline medium, Herald DGU (in Russian), 2013, no. 6 (28), p. 176.
  45. Omarova, K.O., Khidirov, Sh.Sh., and Khibiev, Kh.S., Adsorption of dimethyl sulfoxide on a smooth platinum electrode, Herald DSU (in Russian), 2013, no. 1 (28), p. 194.
  46. Khidirov, Sh.Sh., Omarova, K.O., and Khibiev, Kh.S., Method of producing dimethyl sulfone, Patent 2377235 (Russia), 2009. https://goo-gl.su/JCBiAJ3
  47. Khidirov, Sh.Sh., Omarova, K.O., and Khibiev, Kh.S., Method of producing methanesulfonic acid, Patent 2344126 (Russia), 2009. https://goo-gl.su/a7RuRXMd
  48. Akhmedov, M.A., Khidirov, Sh.Sh., Koparova, M.Y., and Khibiev, Kh.S., Electrochemical synthesis of methanesulfonic acid from aqueous solutions of dimethyl sulfone (in Russian), Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2016, no. 12 (59), p. 100. https://doi.org/10.6060/tcct.20165912.5345
  49. Akhmedov, M.A., Khidirov, Sh.Sh., and Koparova, M.Yu., Electrochemical oxidation of dimethyl sulfone in alkaline medium, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (in Russian), 2018, vol. 61, no. 8, p. 32. https://doi.org/10.6060/ivkkt.20186108.5707
  50. Khidirov, Sh.Sh. Akhmedov, M.A., Khibiev, Kh.S., and Omarova, K.O., Method of producing methanesulfonic acid, Patent 2496772 (Russia), 2013. https://goo-gl.su/5WOgLhxS.
  51. Khidirov, Sh.Sh., Akhmedov, M.A., and Rabadanov M.Kh., Method of producing methanesulfonic acid, Patent 2554880 (Russia), 2015. https://goo-gl.su/L0WTTTz.
  52. Khidirov, Sh.Sh., Akhmedov, M.A., Rabadanov, M.Kh., and Kaparova, M.Yu., Method of producing dimethyl disulfon, Patent 2641302 (Russia), 2018. https://goo-gl.su/mHzIEP.
  53. Akhmedov, M.A., Khidirov, Sh.Sh., Anodic processes at smooth platinum electrode in concentrated solution of methanesulfonic acid, Russ. J. Electrochem., 2019, vol. 55, no. 6, p. 579. https://doi.org/10.1134/S1023193519060028
  54. Trasatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry, J. Electroanalyt. Chem., 1992, vol. 327, p. 353. https://doi.org/10.1016/0022-0728(92)80162-w
  55. Scholz, F., Electro-analytical Methods. Guide to Experiments and Applications, Berlin-Heidelberg: Springer, 2002. 326 p.
  56. Damaskin, B.B. and Petrii, O.A., Introduction to electrochemical kinetics (in Russian), Moscow: Vysshaya Shkola, 1983.
  57. Martens, W.N., Frost, R.L., Kristof, J., and Theo Kloprogge, J., Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K, Raman Spectroscopy, 2002, vol. 33, p. 84. https://doi.org/10.1002/jrs.827
  58. McLachlan, R.D. and Carter, V.B., Vibrational spectra of crystalline dimethyl sulfone, Spectrochem.Acta Part A: Molecular Spectroscopy, 1970, vol. 26, p. 1121. https://doi.org/10.1016/0584-8539(70)80016-2
  59. Reuter, H., Structural parameters of dimethyl sulfoxide, DMSO, at 100 K, based on a redetermination by use of high-quality single-crystal X-ray data, Acta Cryst., 2017, vol. E73, p. 1405. https://doi.org/10.1107/S2056989017012464
  60. Thomas, S.P., Shi, M.W., Koutsantonis, G.A., Jayatilaka, D., Edwards, A.J., and Spackman, M.A., The elusive structural origin of plastic bending in dimethyl sulfone crystals with quasi-isotropic crystal packing, Angew. Chem., 2017, vol. 129, no. 29, p. 8588. https://doi.org/10.1002/ange.201701972