Temperature Effects on the Behavior of Lithium Iron Phosphate Electrodes

E. K. Tusseeva E. K. Tusseeva , T. L. Kulova T. L. Kulova , A. M. Skundin A. M. Skundin , A. K. Galeeva A. K. Galeeva , A. P. Kurbatov A. P. Kurbatov
Российский электрохимический журнал
Abstract / Full Text

The systematic study of the effect of temperature (in the range from −45 to +60°C) on the process of lithium extraction from LiFePO4 and its insertion into FePO4 is carried out. At a current of about C/1.5, with decreasing temperature, the capacity decreases, the polarization increases, the range of compositions corresponding to nonequilibrium solid solutions widens, and the slope of the linear section of the galvanostatic curves corresponding to the two-phase system increases. The decrease in the capacity with decreasing temperature is not described by the simple Arrhenius equation. It is assumed that the process on the lithium iron phosphate electrodes has a mixed diffusion-activation nature. The polarization of the anodic and cathodic processes increases with decreasing temperature in a complicated way, and the polarization of the anodic process exceeds that of the cathodic process appreciably.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    E. K. Tusseeva, T. L. Kulova & A. M. Skundin

  • Center of Physical Chemical Methods of Research and Analysis, Almaty, Kazakhstan

    A. K. Galeeva

  • Al-Farabi Kazakh National University, Almaty, Kazakhstan

    A. P. Kurbatov

  1. Yuan, L.-X., Wang, Z.-H., Zhang, W.-X., Hu, X.-L., Chen, J.-T., Huang, Y.-H., and Goodenough, J.B., Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy Environ. Sci., 2011, vol. 4, p. 269.
  2. Wang, Y., He, P., and Zhou, H., Olivine LiFePO4: development and future, Energy Environ. Sci., 2011, vol. 4, p. 805.
  3. Wang, J. and Sun, X., Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ. Sci., 2015, vol. 8, p. 1110.
  4. Gong, C., Xue, Z., Wen, S., Ye, Y., and Xie, X., Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries, J. Power Sources, 2016, vol. 318, p. 93.
  5. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 343, p. 395.
  6. Ma, Z., Shao, G., Wang, X., Song, J., and Wang, G., Li3V2(PO4)3 modified LiFePO4/C cathode materials with improved high-rate and low-temperature properties, Ionics, 2013, vol. 19, no. 12, p. 1861.
  7. Chen, L., Lu, C., Chen, Q., Gu, Y., Wang, M., and Chen, Y., Preparation and characterization of nano-LiFePO4/C using two-fluid spray dryer, Appl. Mech. Mater., 2014, vol. 563, p. 62.
  8. Zhao, N., Li, Y., Zhao, X., Zhi, X., and Liang, G., Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material, J. Alloys Comp., 2016, vol. 683, p. 123.
  9. Liu, H., Liu, Y., An, L., Zhao, X., Wang, L., and Liang, G., High energy density LiFePO4/C cathode material synthesized by wet ball milling combined with spray drying method, J. Electrochem. Soc., 2017, vol. 164, no. 14, p. A3666.
  10. Zhi, X., Liang, G., Ou, X., Zhang, S., and Wang, L., Synthesis and electrochemical performance of LiFe-PO4/C composite by improved solid-state method using a complex carbon source, J. Electrochem. Soc., 2017, vol. 164, no. 6, p. A1285.
  11. Li, S., Liu, X., Liu, G., Wan, Y., and Liu, H., Highly enhanced low-temperature performances of LiFe-PO4/C cathode materials prepared by polyol route for lithium-ion batteries, Ionics, 2017, vol. 23, no. 1, p. 19.
  12. Wang, G., Kang, H., Chen, M., Yan, K., Hu, X., and Cairns, E.J., Effects of Solvents on the Electrochemical Performance of LiFePO4/C Composite Electrodes, ChemElectroChem., 2017, vol. 4, no. 2, p. 376.
  13. Xie, D., Cai, G., Liu, Z., Guo, R., Sun, D., Zhang, C., Wan, Y., Peng, J., and Jiang, H., The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure, Electrochim. Acta, 2016, vol. 217, p. 62.
  14. Zheng, F., Yang, C., Ji, X., Hu, D., Chen, Y., and Liu, M. Surfactants assisted synthesis and electrochemical properties of nano-LiFePO4/C cathode materials for low temperature applications, J. Power Sources, 2015, vol. 288, p. 337.
  15. Cai, G., Guo, R., Liu, L., Yang, Y., Zhang, C., Wu, C., Guo, W., and Jiang, H., Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2, J. Power Sources, 2015, vol. 288, p. 136.
  16. Wang, H.-Q., Zhang, X.-H., Zheng, F.-H., Huang, Y.-G., and Li, Q.-Y., Surfactant effect on synthesis of core-shell LiFePO4/C cathode materials for lithium-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 187.
  17. Ma, Z., Shao, G., Qin, X., Fan, Y., Wang, G., Song, J., and Liu, T., Ionic conductor cerous phosphate and carbon hybrid coating LiFePO4 with improved electrochemical properties for lithium ion batteries, J. Power Source, 2014, vol. 269, p. 194.
  18. Liao, L., Cheng, X., Ma, Y., Zuo, P., Fang, W., Yin, G., and Gao, Y., Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode, Electrochim. Acta, 2013, vol. 87, p. 466.
  19. Gong, C., Xue, Z., Wang, X., Zhou, X.-P., Xi, X.-L., and Mai, Y.-W., Poly(ethylene glycol) grafted multi-walled carbon nanotubes/LiFePO4 composite cathodes for lithium ion batteries, J. Power Sources, 2014, vol. 246, p. 260.
  20. Yang, X., Xu, Y., Zhang, H., Huang, Y., Jiang, Q., and Zhao, C., Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, Electrochim. Acta, 2013, vol. 114, p. 259.
  21. Xiao, Z., Zhang, Y., and Hu, G., An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry, J. Appl. Electrochem. 2014, vol. 45, p. 225.
  22. Yang, C.-C., Jang, J.-H., and Jiang, J.-R., Comparison electrochemical performances of spherical LiFePO4/C cathode materials at low and high temperatures. Energy Procedia. 2014, vol. 61, p. 1402.
  23. Yang, C.-C., Jang, J.-H., and Jiang, J.-R., Study of electrochemical performances of lithium titanium oxide-coated LiFePO4/C cathode composite at low and high temperatures, Appl. Energy, 2016, vol. 162, p. 1419.
  24. Wu, G., Liu, N., Gao, X., Tian, X., Zhu, Y., Zhou, Y., and Zhu, Q., A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life, Appl. Surface Science, 2018, vol. 435, p. 1329.
  25. Oh, S.W., Myung, S.-T., Oh, S.-M., Oh, K.H., Amine, K., Scrosati, B., and Sun, Y.-K. Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable Lithium Batteries, Advanced Mater., 2010, vol. 22, p. 4842.
  26. Xie, H.-M., Wang, R.-S., Ying, J.-R., Zhang, L.-Y., Jalbout, A.F., Yu, H.-Y., Yang, G.-L., Pan, X.-M., and Su, Z.-M., Optimized LiFePO4—Polyacene Cathode Material for Lithium-Ion Batteries, Advanced Mater., 2006, vol. 18, p. 2609.
  27. Hsieh, C.-T., Pai, C.-T., Chen, Y.-F., Yu, P.-Y., and Juang, R.-S., Electrochemical performance of lithium iron phosphate cathodes at various temperatures, Electrochim. Acta, 2014, vol. 115, p. 96.
  28. Lewandowski, A., Kurc, B., Swiderska-Mocek, A., and Kusa, N., GraphitejLiFePO4 lithium-ion battery working at the heat engine coolant temperature, J. Power Sources, 2014, vol. 266, p. 132.
  29. Wongittharom, N., Wang, C.-H., Wang, Y.-C., Fey, G.T.-K., Li, H.-Y., Wu, T.-Y., Lee, T.-C., and Chang, J.-K., Charge-storage performance of Li/LiFePO4 cells with additive incorporated ionic liquid electrolytes at various temperatures, J. Power Sources, 2014, vol. 260, p. 268.
  30. Huang, Y., Xu, Y., and Yang, X., Enhanced electrochemical performances of LiFePO4/C by co-doping with magnesium and fluorine, Electrochim. Acta, 2013, vol. 113, p. 156.
  31. Chen, M.-S., Wu, S.-h., Pang, and W.K., Effects of vanadium substitution on the cycling performance of olivine cathode materials, J. Power Sources, 2013, vol. 241, p. 690.
  32. Kurita, T., Lu, J., Yaegashi, M., Yamada, Y., Nishimura, S.-i., Tanaka, T., Uzumaki, T., and Yamada, A., Challenges toward higher temperature operation of LiFePO4, J. Power Sources, 2012, vol. 214, p. 166.
  33. Zhang, S.S., Xu, K., and Jow, T.R., An improved electrolyte for the LiFePO4 cathode working in a wide temperature range, J. Power Sources. 2006, vol. 159, p. 702.
  34. Wu, X.-L., Guo, Y.-G., Su, J., Xiong, J.-W., Zhang, Y.-L., and Wan, L.-J., Carbon-Nanotube-Decorated Nano-LiFePO4@C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries. Advanced Energy Mater., 2013, vol. 3, p. 1155.
  35. Tusseeva, E.K., Kulova, T.L., and Skundin, A.M., Temperature effect on the lithium titanate electrode behavior, Russ. J. Electrochem., 2018, vol. 54, p. 1186.
  36. Kulova, T.L., Effect of Temperature on Reversible and Irreversible Processes during Lithium Intercalation in Graphite, Russ. J. Electrochem., 2004. vol. 40, p. 1052.